@article{VSGU_2017_1_a4,
author = {M. V. Shamolin},
title = {Cases of integrability corresponding to the pendulum motion in four-dimensional space},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {41--58},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_1_a4/}
}
TY - JOUR AU - M. V. Shamolin TI - Cases of integrability corresponding to the pendulum motion in four-dimensional space JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 41 EP - 58 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2017_1_a4/ LA - ru ID - VSGU_2017_1_a4 ER -
M. V. Shamolin. Cases of integrability corresponding to the pendulum motion in four-dimensional space. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 41-58. http://geodesic.mathdoc.fr/item/VSGU_2017_1_a4/
[1] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the plane”, Vestnik of Samara State University. Natural Sciences Series, 2015, no. 10(132), 91–113 (in Russian)
[2] Shamolin M. V., “Cases of integrability corresponding to the pendulum motion on the three-dimensional space”, Vestnik of Samara State University. Natural Sciences Series, 2016, no. 3–4, 75–97 (in Russian)
[3] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975 (in English) | DOI | MR | Zbl
[4] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Dynamical Systems, Results of science and technics. Series: “Contemporary Mathematics and its Applications. Subject reviews”, 125, 2013, 5–254 (in Russian)
[5] Pokhodnya N. V., Shamolin M. V., “Some conditions of integrability of dynamics system in transcedent functions”, Vestnik of Samara State University. Natural Sciences Series, 2013, no. 9/1(110), 35–41 (in Russian)
[6] Shamolin M. V., “Variety of types of phase portraits in the dynamics of a rigid body interacting with a resisting medium”, Doklady Mathematics, 349:2 (1996), 193–197 (in Russian) | Zbl
[7] Shamolin M. V., “Dynamical Systems With Variable Dissipation: Approaches, Methods, and Applications”, Fundamental and Applied Mathematics, 14:3 (2008), 3–237 (in Russian) | Zbl
[8] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspects in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian)
[9] Trofimov V. V., “Symplectic structures on symmetruc spaces of automorphysm groups”, Moscow University Mathematics Bulletin, 1984, no. 6, 31–33 (in Russian)
[10] Trofimov V. V., Shamolin M. V., “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems”, Fundamental and Applied Mathematics, 16:4 (2010), 3–229 (in Russian)
[11] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Izd-vo “Ekzamen”, M., 2007, 352 pp. (in Russian)
[12] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915 (in English) | DOI | MR | Zbl
[13] Shamolin M. V., “Some model problems of dynamics for a rigid body interacting with a medium”, International Applied Mechanics, 43:10 (2007), 49–67 (in Russian)