Problem with dynamic boundary conditions for a hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 21-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an initial-boundary problem with dynamic boundary condition for a hyperbolic equation in a rectangle. Dynamic boundary condition represents a relation between values of derivatives with respect of spacial variables of a required solution and first-order derivatives with respect to time variable. The main result lies in substantiation of solvability of this problem. We prove the existence and uniqueness of a generalized solution. The proof is based on the a priori estimates obtained in this paper, Galyorkin’s procedure and the properties of Sobolev spaces.
Keywords:
dynamic boundary conditions, hyperbolic equation, generalized solution.
@article{VSGU_2017_1_a2,
author = {V. A. Kirichek and L. S. Pulkina},
title = {Problem with dynamic boundary conditions for a hyperbolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {21--27},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/}
}
TY - JOUR AU - V. A. Kirichek AU - L. S. Pulkina TI - Problem with dynamic boundary conditions for a hyperbolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2017 SP - 21 EP - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/ LA - ru ID - VSGU_2017_1_a2 ER -
V. A. Kirichek; L. S. Pulkina. Problem with dynamic boundary conditions for a hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 21-27. http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/