Problem with dynamic boundary conditions for a hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 21-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an initial-boundary problem with dynamic boundary condition for a hyperbolic equation in a rectangle. Dynamic boundary condition represents a relation between values of derivatives with respect of spacial variables of a required solution and first-order derivatives with respect to time variable. The main result lies in substantiation of solvability of this problem. We prove the existence and uniqueness of a generalized solution. The proof is based on the a priori estimates obtained in this paper, Galyorkin’s procedure and the properties of Sobolev spaces.
Keywords: dynamic boundary conditions, hyperbolic equation, generalized solution.
@article{VSGU_2017_1_a2,
     author = {V. A. Kirichek and L. S. Pulkina},
     title = {Problem with dynamic boundary conditions for a hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--27},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/}
}
TY  - JOUR
AU  - V. A. Kirichek
AU  - L. S. Pulkina
TI  - Problem with dynamic boundary conditions for a hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 21
EP  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/
LA  - ru
ID  - VSGU_2017_1_a2
ER  - 
%0 Journal Article
%A V. A. Kirichek
%A L. S. Pulkina
%T Problem with dynamic boundary conditions for a hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 21-27
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/
%G ru
%F VSGU_2017_1_a2
V. A. Kirichek; L. S. Pulkina. Problem with dynamic boundary conditions for a hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 21-27. http://geodesic.mathdoc.fr/item/VSGU_2017_1_a2/

[1] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, Nauka, M., 1977 (in Russian)

[2] T. Louw, S. Whitney, A. Subramanian, H. Viljoen, “Forced wave mation with internal and boundary damping”, Journal of applied physics, 111 (2012), 014702 (in English) | DOI

[3] Korpusov M. O., Destruction in nonclassical wave equations, URSS, M., 2010 (in Russian)

[4] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear second-order boundary damping”, EJDE, 28 (1998), 1–10 (in English) | MR

[5] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibrations of a rod with dynamic boundary conditions”, Vestnik of Samara State University, 2014, no. 3(114), 9–19 (in Russian)

[6] Pulkina L. S., “A problem with dynamic nonlocal condition for pseudohyperbolic equation”, Russian Mathematics. (Iz. VUZ), 2016, no. 9, 42–50 (in Russian)

[7] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973 (in Russian)

[8] Beylin S. A., “On a certain boundary problem for a wave equation”, Vestnik of Samara State University, 2011, no. 5(86), 12–17 (in Russian)