Problem with time-dependent boundary conditions for hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 7-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a problem for hyperbolic equation with standard initial data and nonlocal dynamic conditions. Such conditions may arise when a thick short bar fixed by point forces and springs. The existence and uniqueness of the problem are proved. The proof is mainly based on a priori estimates and Galerkin procedure.
Keywords: hyperbolic equation, generalized solution, dynamic conditions.
Mots-clés : nonlocal conditions
@article{VSGU_2017_1_a0,
     author = {A. V. Dyuzheva},
     title = {Problem with time-dependent boundary conditions for hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--14},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2017_1_a0/}
}
TY  - JOUR
AU  - A. V. Dyuzheva
TI  - Problem with time-dependent boundary conditions for hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2017
SP  - 7
EP  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2017_1_a0/
LA  - ru
ID  - VSGU_2017_1_a0
ER  - 
%0 Journal Article
%A A. V. Dyuzheva
%T Problem with time-dependent boundary conditions for hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2017
%P 7-14
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2017_1_a0/
%G ru
%F VSGU_2017_1_a0
A. V. Dyuzheva. Problem with time-dependent boundary conditions for hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1 (2017), pp. 7-14. http://geodesic.mathdoc.fr/item/VSGU_2017_1_a0/

[1] Gording L., The Cauchy problem for hyperbolic equations, Iz-vo inostrannoi literatury, M., 1961, 120 pp. (in Russian)

[2] Kozhanov A. I., “Nonlocal problems for linear hyperbolic equations with boundary conditions containing time-derivative”, Doklady AMAN, 12:1 (2010), 40–52 (in Russian)

[3] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. (in Russian)

[4] Lazhetych N. L., “About the classical solvability of a mixed problem for a one-dimensional hyperbolic equation of the second order”, Differential equations, 42:8 (2006), 1072–1077 (in Russian) | Zbl

[5] Pulkina L. S., Dyuzheva A. V., “Nonlocal problem with Steklov's time-varying boundary conditions for a hyperbolic equation”, Vestnik of Samara State University. Natural science series, 2010, no. 4(86), 56–64 (in Russian)

[6] Steklov V. A., Basic problems of mathematical physics, Nauka, M., 1983 (in Russian)

[7] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1977 (in Russian)