Cases of integrability corresponding to the pendulum motion in three-dimensional space
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 75-97
Voir la notice de l'article provenant de la source Math-Net.Ru
In this actitity, we systemize some results on the study of the equations of spatial motion of dynamically symmetric fixed rigid bodies-pendulums located in a nonconservative force fields. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem of a spatial motion of a free rigid body also located in a similar force fields. Herewith, this free rigid body is influenced by a nonconservative tracing force; under action of this force, either the magnitude of the velocity of some characteristic point of the body remains constant, which means that the system possesses a nonintegrable servo constraint. The obtained results are systematized and served in the invariant form. We also show the nontrivial topological and mechanical analogies.
Keywords:
rigid body, resisting medium, dynamical system, three-dimensional phase pattern, case of integrability.
@article{VSGU_2016_3-4_a6,
author = {M. V. Shamolin},
title = {Cases of integrability corresponding to the pendulum motion in three-dimensional space},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {75--97},
publisher = {mathdoc},
number = {3-4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a6/}
}
TY - JOUR AU - M. V. Shamolin TI - Cases of integrability corresponding to the pendulum motion in three-dimensional space JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2016 SP - 75 EP - 97 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a6/ LA - ru ID - VSGU_2016_3-4_a6 ER -
%0 Journal Article %A M. V. Shamolin %T Cases of integrability corresponding to the pendulum motion in three-dimensional space %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2016 %P 75-97 %N 3-4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a6/ %G ru %F VSGU_2016_3-4_a6
M. V. Shamolin. Cases of integrability corresponding to the pendulum motion in three-dimensional space. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 75-97. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a6/