Mots-clés : existence.
@article{VSGU_2016_3-4_a4,
author = {N. V. Zaitseva},
title = {The boundary value problem for a hyperbolic equation with {Bessel} operator in a rectangular domain with integral boundary value condition of the first kind},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {51--62},
year = {2016},
number = {3-4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a4/}
}
TY - JOUR AU - N. V. Zaitseva TI - The boundary value problem for a hyperbolic equation with Bessel operator in a rectangular domain with integral boundary value condition of the first kind JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2016 SP - 51 EP - 62 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a4/ LA - ru ID - VSGU_2016_3-4_a4 ER -
%0 Journal Article %A N. V. Zaitseva %T The boundary value problem for a hyperbolic equation with Bessel operator in a rectangular domain with integral boundary value condition of the first kind %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2016 %P 51-62 %N 3-4 %U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a4/ %G ru %F VSGU_2016_3-4_a4
N. V. Zaitseva. The boundary value problem for a hyperbolic equation with Bessel operator in a rectangular domain with integral boundary value condition of the first kind. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 51-62. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a4/
[1] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Equations of mathematical physics in partial derivatives, Vysshaya shkola, M., 1970, 712 pp. (in Russ.)
[2] Pulkin S. P., Selected Works, Univers Group Publishers, Samara, 2007, 264 pp. (in Russ.)
[3] Pulkin S. P., “On uniqueness of solution of singular Hellerstedt problem”, Izv. vuzov. Mathem., 1960, no. 6(19), 214–225 (in Russ.) | Zbl
[4] Sabitov K. B., Ilyasov R. R., “Ill-posed boundary value problems for certain class of hyperbolic equations”, Izv. vuzov. Mathem., 2001, no. 5, 59–63 (in Russ.)
[5] Sabitov K. B., Ilyasov R. R., “Solution of Tricomi problem for equation of mixed type with singular coefficient by spectral method”, Izv. vuzov. Mathem., 2004, no. 2, 64–71 (in Russ.)
[6] Cannon I. R., “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155–160 | DOI | MR
[7] Kamynin L. I., “Certain boundary value problem of heat-conductivity theory with non-classical boundary conditions”, Journ. Vych. Math. i Math. Phys., 4:6 (1964), 1006–1024 (in Russ.)
[8] Ionkin N. I., “Solution of certain boundary value problem on heat-conductivity with non-classical boundary condition”, Differ. Uravn., 13:2 (1977), 276–304 (in Russ.)
[9] Pulkina L. S., “Non-local problem with integral condition for hyperbolic equations”, Differ. Uravn., 40:7 (2004), 887–892 (in Russ.) | Zbl
[10] Pulkina L. S., Problems with non-classical conditions for hyperbolic equations, Samara University Publishers, Samara, 2012, 194 pp. (in Russ.)
[11] Sabitov K. B., “Boundary value problem for equation of parabolic-hyperbolic type with nonlocal integral condition”, Differ. Uravn., 46:10 (2010), 1468–1478 (in Russ.) | Zbl
[12] Yurchuk N. I., “Mixed problem with integral condition for some hyperbolic equations”, Differ. Uravn., 22:12 (1986), 2117–2126 (in Russ.) | Zbl
[13] Benouar N. E., Yurchuk N. I., “Mixed problem with integral condition for a parabolic eqyations with Bessel operator”, Differ. Uravn., 27:12 (1991), 2094–2098 (in Russ.)
[14] Bouziani A., Mesloub S., “A strong solution of an envolution problem with integral condition”, Georgian Mathematical Journal, 9:12 (2002), 149–159 | MR | Zbl
[15] Beilin S. A., “Existence of solutions for one-dimensional wave equations with nonlocal conditions”, Electronic Journal of Differential Equations, 2001, no. 76, 1–8 | MR
[16] Beilin S. A., “Mixed problem with integral condition for wave equation”, Nonclassical equations of mathematical phisics, Sobolev Institute of Mathematics, Novosibirsk, 2005, 37–43 (in Russ.)
[17] Sabitov K. B., “Nonlocal problem for equation of parabolic-hyperbolic type in rectangular domain”, Mathem. Zametki, 9:4 (2011), 596–602 (in Russ.) | DOI
[18] Sabitiva Yu. K., “Non-local initial-boundary value problems for degenerate hyperbolic equation”, Izv. vuzov. Mathem., 2009, no. 12, 49–58 (in Russ.)
[19] Sabitov K. B., Vagapova E. V., “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differential equations, 49:1 (2013), 68–78 (in Russ.) | Zbl
[20] Sabitiva Yu. K., “Boundary value problem with non-local integral condition for equations of mixed type with degeneration on transfer line”, Mathem. Zametki, 98:3 (2015), 393–406 (in Russ.) | DOI | Zbl
[21] Watson G. N., Theory of Bessel functions, v. I, Inostr. Literature, M., 1949, 799 pp. (in Russ.)
[22] Olver F. W. J., Introduction to asymptotics and special functions, Mir, M., 1986, 381 pp. (in Russ.)