A nonlocal problem with integral condition for a fourth order equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider initial-boundary problems with integral conditions for certain fourth order equation. Unique solvability of posed problems is proved. The proof is based on apriori estimates, regularization method, auxiliary problems method, embedding theorems.
Keywords:
equation of 4-th order, embedding theorems,
generalized solution
Mots-clés : nonlocal conditions, Sobolev spaces.
Mots-clés : nonlocal conditions, Sobolev spaces.
@article{VSGU_2016_3-4_a3,
author = {V. B. Dmitriev},
title = {A nonlocal problem with integral condition for a fourth order equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {32--50},
publisher = {mathdoc},
number = {3-4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/}
}
TY - JOUR AU - V. B. Dmitriev TI - A nonlocal problem with integral condition for a fourth order equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2016 SP - 32 EP - 50 IS - 3-4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/ LA - ru ID - VSGU_2016_3-4_a3 ER -
V. B. Dmitriev. A nonlocal problem with integral condition for a fourth order equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/