A nonlocal problem with integral condition for a fourth order equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider initial-boundary problems with integral conditions for certain fourth order equation. Unique solvability of posed problems is proved. The proof is based on apriori estimates, regularization method, auxiliary problems method, embedding theorems.
Keywords: equation of 4-th order, embedding theorems, generalized solution
Mots-clés : nonlocal conditions, Sobolev spaces.
@article{VSGU_2016_3-4_a3,
     author = {V. B. Dmitriev},
     title = {A nonlocal problem with integral condition for a fourth order equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {32--50},
     publisher = {mathdoc},
     number = {3-4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/}
}
TY  - JOUR
AU  - V. B. Dmitriev
TI  - A nonlocal problem with integral condition for a fourth order equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 32
EP  - 50
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/
LA  - ru
ID  - VSGU_2016_3-4_a3
ER  - 
%0 Journal Article
%A V. B. Dmitriev
%T A nonlocal problem with integral condition for a fourth order equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 32-50
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/
%G ru
%F VSGU_2016_3-4_a3
V. B. Dmitriev. A nonlocal problem with integral condition for a fourth order equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/