A nonlocal problem with integral condition for a fourth order equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider initial-boundary problems with integral conditions for certain fourth order equation. Unique solvability of posed problems is proved. The proof is based on apriori estimates, regularization method, auxiliary problems method, embedding theorems.
Keywords: equation of 4-th order, embedding theorems, generalized solution
Mots-clés : nonlocal conditions, Sobolev spaces.
@article{VSGU_2016_3-4_a3,
     author = {V. B. Dmitriev},
     title = {A nonlocal problem with integral condition for a fourth order equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {32--50},
     year = {2016},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/}
}
TY  - JOUR
AU  - V. B. Dmitriev
TI  - A nonlocal problem with integral condition for a fourth order equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 32
EP  - 50
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/
LA  - ru
ID  - VSGU_2016_3-4_a3
ER  - 
%0 Journal Article
%A V. B. Dmitriev
%T A nonlocal problem with integral condition for a fourth order equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 32-50
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/
%G ru
%F VSGU_2016_3-4_a3
V. B. Dmitriev. A nonlocal problem with integral condition for a fourth order equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 32-50. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a3/

[1] A.I. Kozhanov, L.S. Pulkina, “On the solvability of boundary value problems with nonlocal boundary conditions of integral form for multidimensional hyperbolic equations”, Differents. equation, 42:9 (2006), 1166–1179 | Zbl

[2] A.I. Kozhanov, “On the solvability of some spatial nonlocal problems for linear parabolic equations”, Vestnik SamSU, 2008, no. 3(62), 165–174

[3] L.S. Pulkina, “Initial boundary value problem with a nonlocal boundary condition for a multidimensional hyperbolic equation”, Differents. equation, 44:8 (2008), 1084–1089 | Zbl

[4] Egorov I. E., Fedorov V. E., Nonclassical equations of mathematical physics, Publishing house SB RAS computing center, Novosibirsk, 1995, 133 pp.

[5] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[6] A.I. Kozhanov, “On the solvability of the first initial-boundary value problem for a class of degenerate Sobolev type equations of high order”, Nonclassical equations of mathematical physics, Sat. sci. works, Publishing house of Institute of mathematics of SB RAS, Novosibirsk, 2007, 172–181

[7] L. Harding, The Cauchy Problem for hyperbolic equations, Ed. IL, M., 1961, 122 pp.

[8] A. I. Kozhanov, L. S. Pulkina, “On the solvability of boundary value problems with nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Doklady mathematics, 404:5 (2005)

[9] O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, M., 1973, 408 pp.

[10] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and quasilinear equations of parabolic type, Nauka, M., 1967, 736 pp.

[11] L.S. Pontryagin, Ordinary differential equations, section for universities, Ed. 4th, Nauka, M., 1974, 331 pp.

[12] Besov O. V., Il'in V. P., Nikolsky S. M., Integral representations of functions and embedding theorems, Nauka, M., 1975, 480 pp.

[13] S.Y. Yakubov, Linear differential-operator equations and their applications, Elm Press, Baku, 1985