On a model of optimal temperature control in hothouses
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 14-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

While growing plants in industrial hothouses it needs to keep the temperature according to round-the-clock graph at the point of growth of plant located at the fixed height. Only small deviations are admitted. To obtain this it is possible to increase the temperature by heating the floor and to decrease the temperature by opening the ventilator windows at the ceiling. We propose and analyse the model based on the heat equation. Physical sense of this problem is that at one end of the infinitely thin rod of length $l$ (the height of the hothouse) we keep during the time $T$ the temperature $\phi(t)$ (control function), while at the other end we have the given heat flow $\psi(t)$. It requires to find the control function $\phi_0(t)$ such that the temperature at the fixed point c be maximally closed to the given temperature $z(t)$. For the estimation of the control quality we use a quadratic integral functional.
Keywords: optimal control, temperature control, hothouse, heat equation, quadratic integral functional.
@article{VSGU_2016_3-4_a1,
     author = {I. V. Astashova and D. A. Lashin and A. V. Filinovskiy},
     title = {On a model of optimal temperature control in hothouses},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {14--23},
     year = {2016},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a1/}
}
TY  - JOUR
AU  - I. V. Astashova
AU  - D. A. Lashin
AU  - A. V. Filinovskiy
TI  - On a model of optimal temperature control in hothouses
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 14
EP  - 23
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a1/
LA  - ru
ID  - VSGU_2016_3-4_a1
ER  - 
%0 Journal Article
%A I. V. Astashova
%A D. A. Lashin
%A A. V. Filinovskiy
%T On a model of optimal temperature control in hothouses
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 14-23
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a1/
%G ru
%F VSGU_2016_3-4_a1
I. V. Astashova; D. A. Lashin; A. V. Filinovskiy. On a model of optimal temperature control in hothouses. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 14-23. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a1/

[1] D. A. Lashin, “Strategy of management to microclimate in hothouses”, Gavrish, 2005, no. 1, 33–35 (in Russian)

[2] D. A. Lashin, “On the optimal control of a temperature regime”, Differ. Equ., 44:6 (2008), 853 | Zbl

[3] Lashin D. A., “On the existence of optimal control of temperature regimes”, J. of Math. Sci., 158:2 (2009), 219–227 | DOI | MR | Zbl

[4] I.V. Astashova et al., “Some Problems in the Qualitative Theory of Differential Equations”, J. of Natural Geometry. Jnan Bhawan. London, 23:1–2 (2003), 1–126 | MR | Zbl

[5] I. V. Astashova (ed.), Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis, scientific edition, UNITYDANA, M., 2012, 647 pp. (in Russian)

[6] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer, Berlin, 1971 | MR | Zbl

[7] A. G. Butkovsky, “Optimal Control in the Systems with Distributed Parameters”, Avtomatika i Telemechanika, 22:1 (1961), 17–26 | Zbl

[8] A. I. Egorov, Optimal Control by Heat and Diffusion Processes, Nauka, M., 1978 (in Russian)

[9] Yu. V. Egorov, “Some Problems of Theory of Optimal Control Zhurnal”, Vych. Mat. i Mat. Fiziki, 3:5 (1963), 887–904 (in Russian) | Zbl

[10] Butkovsky A. G., Egorov A. I., Lurie K. A., “Optimal control of distributed systems”, SIAM J. Control, 6:3 (1968), 437–476 | DOI | MR | Zbl

[11] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and applications, Nauchnaya Kniga, Novosibirsk, 1999 (in Russian)

[12] G. C. Goodwin, S. F. Graebe, M. E. Salgado, Control system design, Pearson, London–New-York, 2000

[13] Farag M. H., Talaat T. A., Kamal E. M., “Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems”, Cubo, 15:2 (2013), 111–119 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'seva, Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | MR | Zbl

[15] O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Fizmatlit, M., 1973

[16] Riesz F., Szökefalvi-Nagy B., Functional Analysis, Dover, New-York, 1990 | MR | Zbl

[17] A. M. Ilin, A. S. Kalashnikov, O. A. Oleinik, “Linear equations of second order of parabolic type”, Russ. Math. Surways, 17:3 (1962), 3–146

[18] E. M. Landis, O. A. Oleinik, “Generalized analiticity and some connected properties of solutions of elliptic and parabolic equations”, Russ. Math. Surways, 29:2 (1974), 190–206 | Zbl