Mots-clés : group action
@article{VSGU_2016_3-4_a0,
author = {E. A. Astashov},
title = {On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {7--13},
year = {2016},
number = {3-4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/}
}
TY - JOUR AU - E. A. Astashov TI - On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2016 SP - 7 EP - 13 IS - 3-4 UR - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/ LA - ru ID - VSGU_2016_3-4_a0 ER -
%0 Journal Article %A E. A. Astashov %T On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2016 %P 7-13 %N 3-4 %U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/ %G ru %F VSGU_2016_3-4_a0
E. A. Astashov. On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/
[1] Arnold V. I., “Normal forms of functions near degenerate critical points, the Weyl groups $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Functional Anal. Appl., 6:4 (1972), 254–272 | DOI | MR
[2] Arnold V. I., “Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces”, Russian Math. Surveys, 34:1 (1979), 1–42 | DOI | MR | Zbl
[3] Domitrz W., Manoel M., Rios P. de M., “The Wigner caustic on shell and singularities of odd functions”, J. of Geometry and Physics, 71 (2013), 58–72 | DOI | MR | Zbl
[4] Astashov E. A., “On the classification of singularities that are equivariant simple with respect to representations of cyclic groups”, Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 26:2 (2016), 155–159 (in Russian) | Zbl
[5] Bruce J. W., Kirk N. P., du Plessis A. A., “Complete transversals and the classification of singularities”, Nonlinearity, 10 (1997), 253–275 | DOI | MR | Zbl
[6] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, v. 1, 2, Monographs Math., 82–83, Birkhauser, Boston, 1985–1988, 845 pp. | MR | Zbl