On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem to classify function germs $(\mathbb{C}^2,0)\to(\mathbb{C},0)$ that are equivariant simple with respect to nontrivial actions of the group $\mathbb{Z}^3$ on $\mathbb{C}^2$ and on $\mathbb{C}$ up to equivariant automorphism germs $(\mathbb{C}^2,0)\to(\mathbb{C}^2,0)$. The complete classification of such germs is obtained in the case of nonscalar action of $\mathbb{Z}^3$ on $\mathbb{C}^2$ that is nontrivial in both coordinates. Namely, a germ is equivariant simple with respect to such a pair of actions if and only if it is equivalent to ine of the following germs: \begin{eqnarray*} (x,y)\mapsto x^{3k+1}+y^2, \quad k\geqslant1;\\ (x,y)\mapsto x^2y+y^{3k-1}, \quad k\geqslant2;\\ (x,y)\mapsto x^4+xy^3;\\ (x,y)\mapsto ^4+y^5. \end{eqnarray*}
Keywords: classification of singularities, simple singularities, equivariant functions.
Mots-clés : group action
@article{VSGU_2016_3-4_a0,
     author = {E. A. Astashov},
     title = {On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--13},
     year = {2016},
     number = {3-4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/}
}
TY  - JOUR
AU  - E. A. Astashov
TI  - On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 7
EP  - 13
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/
LA  - ru
ID  - VSGU_2016_3-4_a0
ER  - 
%0 Journal Article
%A E. A. Astashov
%T On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 7-13
%N 3-4
%U http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/
%G ru
%F VSGU_2016_3-4_a0
E. A. Astashov. On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3-4 (2016), pp. 7-13. http://geodesic.mathdoc.fr/item/VSGU_2016_3-4_a0/

[1] Arnold V. I., “Normal forms of functions near degenerate critical points, the Weyl groups $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Functional Anal. Appl., 6:4 (1972), 254–272 | DOI | MR

[2] Arnold V. I., “Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces”, Russian Math. Surveys, 34:1 (1979), 1–42 | DOI | MR | Zbl

[3] Domitrz W., Manoel M., Rios P. de M., “The Wigner caustic on shell and singularities of odd functions”, J. of Geometry and Physics, 71 (2013), 58–72 | DOI | MR | Zbl

[4] Astashov E. A., “On the classification of singularities that are equivariant simple with respect to representations of cyclic groups”, Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science, 26:2 (2016), 155–159 (in Russian) | Zbl

[5] Bruce J. W., Kirk N. P., du Plessis A. A., “Complete transversals and the classification of singularities”, Nonlinearity, 10 (1997), 253–275 | DOI | MR | Zbl

[6] Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of differentiable maps, v. 1, 2, Monographs Math., 82–83, Birkhauser, Boston, 1985–1988, 845 pp. | MR | Zbl