On perfect imitation resistant ciphers based on combinatorial objects
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 46-50
Cet article a éte moissonné depuis la source Math-Net.Ru
We study perfect imitation resistant ciphers, highlighting particularly the case in which the probabilities of successful imitation and substitution attain their lower limits. On the basis of A.Yu. Zubov’s mathematical model of substitution cipher with unbounded key model of perfect and imitation resistant cipher based on combinatorial objects is constructed.
Keywords:
cipher, perfect cipher, imitation resistant ciphers.
@article{VSGU_2016_1-2_a4,
author = {S. M. Ratseev and V. M. Ratseev},
title = {On perfect imitation resistant ciphers based on combinatorial objects},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {46--50},
year = {2016},
number = {1-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a4/}
}
TY - JOUR AU - S. M. Ratseev AU - V. M. Ratseev TI - On perfect imitation resistant ciphers based on combinatorial objects JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2016 SP - 46 EP - 50 IS - 1-2 UR - http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a4/ LA - ru ID - VSGU_2016_1-2_a4 ER -
S. M. Ratseev; V. M. Ratseev. On perfect imitation resistant ciphers based on combinatorial objects. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 46-50. http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a4/
[1] Zubov A. Yu., Cryptographic Methods of Information Security. Perfect ciphers, Gelios ARV, M., 2005 (in Russian)
[2] Ratseev S. M., “On Construction of Perfect Ciphers”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, no. 1 (34), 192–199 (in Russian) | DOI
[3] Ratseev S. M., “On Perfect Imitation Resistant Ciphers with Unbounded Key”, Vestnik of Samara State University, 2013, no. 9/1 (110), 42–48 (in Russian)
[4] Ratseev S. M., “Some generalizations of Shannon’s theory of perfect ciphers”, Bulletin of the South Ural State University. Series: ”Mathematical Modelling, Programming Computer Software”, 2015, no. 1 (8), 111–127 (in Russian)