A problem with second kind integral conditions for hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a problem for one-dimensional hyperbolic equation with second kind integral conditions and prove unique solvability. To prove this statement we suggest a new approach. The main idea of it is that given nonlocal integral condition is equivalent with a different condition, nonlocal as well but this new condition enables us to introduce a definition of a generalized solution bazed on an integral identity and derive a priori estimates of a required solution in Sobolev space. This approach shows that integral conditions are closely connected with dynamical conditions.
Keywords: nonlocal problem, integral conditions, hyperbolic equation, generalized solution
Mots-clés : dynamical conditions.
@article{VSGU_2016_1-2_a3,
     author = {L. S. Pulkina and A. E. Savenkova},
     title = {A problem with second kind integral conditions for hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {33--45},
     year = {2016},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a3/}
}
TY  - JOUR
AU  - L. S. Pulkina
AU  - A. E. Savenkova
TI  - A problem with second kind integral conditions for hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 33
EP  - 45
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a3/
LA  - ru
ID  - VSGU_2016_1-2_a3
ER  - 
%0 Journal Article
%A L. S. Pulkina
%A A. E. Savenkova
%T A problem with second kind integral conditions for hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 33-45
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a3/
%G ru
%F VSGU_2016_1-2_a3
L. S. Pulkina; A. E. Savenkova. A problem with second kind integral conditions for hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 33-45. http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a3/

[1] Kozhanov A. I., Pulkina L. S., “On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimentional Hyperbolic Equations”, Differential Equations, 42:9 (2006), 1233–1246 | DOI | MR | Zbl

[2] Lions J. L., Quelques methods de resolution des problems aux limites non lineares, Mir, M., 1972 (in Russian)

[3] Ladyzhenskaya O. A., Boundary-value problems of mathematical physics, Nauka, M., 1973, 407 pp. (in Russian)

[4] Dmitriev V. B., “Nonlocal problem with integral conditions for wave equation”, Vestnik of Samara State University, 2006, no. 2(42), 15–27 (in Russian)

[5] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Nauka, M., 2004, 798 pp. (in Russian)

[6] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free vibration of rigid rod based on Rayleigh model”, Proceedings of the USSR Academy of Sciences, 417:1 (2007), 56–61 (in Russian) | Zbl

[7] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear secondorder boundary damping”, EJDE, 1998, no. 28, 1–10

[8] Korpusov M. O., Destruction in nonclassical wave equations, URSS, M., 2010, 237 pp. (in Russian)

[9] Pulkina L., “Solution to nonlocal problems of pseudohyperbolic equations”, EJDE, 2014, no. 116, 1–9 | MR

[10] Ionkin N. I., “Solution of a certain boundary value problem in heat conduction with nonclassical boundary condition”, Differential Equations, 13:2 (1977), 294–304 (in Russian) | Zbl

[11] Skubachevskii A. L., Steblov G. M., “On spectrum of differential operators with nondense in $L_2$ domain”, Proceedings of the USSR Academy of Sciences, 321:6 (1991), 1158–1163 (in Russian) | Zbl

[12] Gordeziani D. G., Avalishvili G. A., “Solutions of Nonlocal Problems for One-dimensional Oscillations of the Medium”, Mathematical Models and Computer Simulations, 12:1 (2000), 94–103 (in Russian) | Zbl

[13] Lazhetich N. L., “On classical solvability of a mixed problem for one-dimensional hyperbolic equation of the second order”, Differential Equations, 2006, no. 42(8), 1072–1077 (in Russian) | Zbl

[14] Kozhanov A. I., “On solvability of some spacial nonlocal boundary problems for linear parabolic equations”, Vestnik of Samara State University, 2008, no. 3(62), 165–174 (in Russian)

[15] Strigun M. V., “On a certain nonlocal problem with integral boundary condition for a hyperbolic equation”, Vestnik of Samara State University, 2009, no. 8(74), 78–87 (in Russian)

[16] Avalishvili G., Avalishvili M., Gordeziani D., “On integral nonlocal boundary problems for some partial differential equations”, Bulletin of the Georgian National Academy of Sciences, 5:1 (2011), 31–37 | MR | Zbl

[17] Pulkina L. S., “Boundary value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Mathematics (Iz. VUZ), 2012, no. 4, 74–83 (in Russian)

[18] Pulkina L. S., Problems with nonclassical conditions for hyperbolic equations, Izd-vo ”Samarskii universitet”, Samara, 2012