Cusp forms with characters of the level $\mathrm{p}$
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 18-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we prove structure theorems for spaces of cusp forms with characters of a level $\mathrm{p}$. The spaces are decomposed in the direct sum of three subspaces. The first subspace is essencial. The eta-quotions play an important role in the investigations. The divisor of the functions is concentrated in cusps. The theorem about the structure of spaces of modular forms with characters is proved. We discuss the question about generators of these spaces and K.Ono’s problem. Dimensions of spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, divisor of function, structure theorems, Cohen–Oesterle formula.
@article{VSGU_2016_1-2_a1,
     author = {G. V. Voskresenskaya},
     title = {Cusp forms with characters of the level~$\mathrm{p}$},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {18--26},
     year = {2016},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a1/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - Cusp forms with characters of the level $\mathrm{p}$
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 18
EP  - 26
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a1/
LA  - ru
ID  - VSGU_2016_1-2_a1
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T Cusp forms with characters of the level $\mathrm{p}$
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 18-26
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a1/
%G ru
%F VSGU_2016_1-2_a1
G. V. Voskresenskaya. Cusp forms with characters of the level $\mathrm{p}$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 18-26. http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a1/

[1] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. | MR | Zbl

[2] Koblitz N., Introduction in elliptic curves and modular forms, Mir, M., 1988, 320 pp. (in Russian) | MR

[3] Knapp A., Elliptic curves, Faktorial Press, M., 2004, 488 pp. (in Russian)

[4] Voskresenskaya G. V., “On representation of modular forms as homogeneous polynomials”, Vestnik of Samara State University, 2015, no. 6(128), 40–49 (in Russian)

[5] Voskresenskaya G. V., “On spaces of modular forms of even weight”, Vestnik of Samara State University, 2014, no. 10(121), 38–47 (in Russian)

[6] Gordon B., Sinor D., “Multiplicative properties of $\eta$-products”, L.N.M.V., 1395, 1987, 173–200 | MR

[7] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 | DOI | MR | Zbl

[8] Dummit D.,Kisilevsky H., MasKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45, 1985, 89–98 | DOI | MR | Zbl

[9] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, LNM, 627, 1976, 69–78 | MR

[10] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV:4 (1990), 273–300 | MR | Zbl