Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 7-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Correctness of boundary value problems in a plane for elliptical equations has been studied properly using the method of the theory of analytic functions. At investigation of analogous problems, when the number of independent variables is more than two, there arise principle difficulties. Quite good and convenient method of singular integral equations has to be abandoned because there is no complete theory of multidimensional singular integral equations. Boundary value problems for second-order elliptical equations in domains with edges have been studied properly earlier. Explicit classical solutions to Dirichlet and Poincare problems in cylindrical domains for one class of multidimensional elliptical equations can be found in the author’s works. In this article, the author proved that the local boundary value problem, which is the generalization of Dirichet and Poincare problem, has only solution. Besides, the criterion of uniqueness of regular solution is obtained.
Keywords: multidimensional elliptical equation, local boundary value problem, cylindrical domain, criterion of uniqueness, Bessel function.
@article{VSGU_2016_1-2_a0,
     author = {S. A. Aldashev},
     title = {Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--17},
     year = {2016},
     number = {1-2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2016
SP  - 7
EP  - 17
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a0/
LA  - ru
ID  - VSGU_2016_1-2_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2016
%P 7-17
%N 1-2
%U http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a0/
%G ru
%F VSGU_2016_1-2_a0
S. A. Aldashev. Correctness of the local boundary value problem in a cylindrical domain for one class of multidimensional elliptic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 1-2 (2016), pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2016_1-2_a0/

[1] Bitsadze A. V., Equations of a mixed type, Izd. AN SSSR, M., 1959, 164 pp. (in Russian)

[2] Bitsadze A. V., Boundary value problems for elliptic equations of the second order, Nauka, M., 1966, 203 pp. (in Russian)

[3] Bitsadze A. V., Some classes of partial differential equations, Nauka, M., 1981, 448 pp. (in Russian)

[4] Mazya V. G., Plamenevsky B. A., “On the task of directional derivative in the area with piecewisesmooth boundary”, Functional analysis, 1971, no. 5(3), 102–103 (in Russian)

[5] Mazya V. G., Plamenevsky B. A., “Shauder decision assessment of elliptic boundary conditions in the areas key-staged on the boundaries”, Proceedings of the seminar devoted to S.L. Sobolev, 1978, no. 2, 69–102 (in Russian)

[6] Kondratiev V. A., Oleynik O. A., “Boundary value problems for equations with partial derivatives in non-smooth areas”, Russian Mathematical Surveys, 38:2(30) (1983), 3–76 (in Russian)

[7] Aldashev S. A., “Correctness of Dirichlet problem in the cylindrical domain for one class of multidimensional elliptical equations”, Siberian Journal of Pure and Applied Mathematics, 12:1 (2012), 7–13 (in Russian)

[8] Aldashev S. A., “Correctness of Puankare problem for one class of multidimensional elliptical equations”, Vestnik SamGU. Natural Science Series, 2014, no. 10(121), 17–25 (in Russian)

[9] Aldashev S. A., “On Darboux problems for one class of multidimensional hyperbolic equations”, Differential equations, 34:1 (1998), 64–68 (in Russian)

[10] Aldashev S. A., Boundary value problems for multidimensional hyperbolic and mixed equations, Gylym, Almaty, 1994, 170 pp. (in Russian)

[11] Mikhlin S. G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. (in Russian)

[12] Kamke E., Reference book on ordinary differential equations, Nauka, M., 1965, 703 pp. (in Russian)

[13] Beitmen G., Erdeyn A., Higher transcendental functions, v. 2, Nauka, M., 1974, 295 pp. (in Russian)

[14] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1976, 543 pp. (in Russian)

[15] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian)

[16] Smirnov V. I., Course of higher mathematics, r. 2, v. 4, Nauka, M., 1981, 550 pp. (in Russian)