One generalization of Marchaud inequality on signsensitive weights
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 82-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

At the proof of a classical Marсhaud inequality for equidistant moduli of continuity of the highest degree the reduction of their definition for arbitrary sign of a step of a finite difference to positive values of this step is used. In case of moduli of continuity with a weight such reduction reduces definitions of moduli of continuity to restriction. Consequently for determination of properties of moduli of continuity with a weight other approach of reasoning is required. Unlike usual weight signsensitive weight allows to consider not only an absolute value of an increment of function, but also a sign of this increment. In the work for metrics with signsensitive weight an analogue of Marchaud inequality on estimation of modulus of continuity of given degree over modulus of continuity of a higher degree is obtained.
Keywords: modulus of continuity, signsensitive weight, continuous functions, modulus of smoothness, finite differences, Marchaud inequality, classes of functions, embedding theorems.
@article{VSGU_2015_6_a9,
     author = {B. M. Ibragimova},
     title = {One generalization of {Marchaud} inequality on signsensitive weights},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {82--88},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a9/}
}
TY  - JOUR
AU  - B. M. Ibragimova
TI  - One generalization of Marchaud inequality on signsensitive weights
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 82
EP  - 88
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a9/
LA  - ru
ID  - VSGU_2015_6_a9
ER  - 
%0 Journal Article
%A B. M. Ibragimova
%T One generalization of Marchaud inequality on signsensitive weights
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 82-88
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a9/
%G ru
%F VSGU_2015_6_a9
B. M. Ibragimova. One generalization of Marchaud inequality on signsensitive weights. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 82-88. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a9/

[1] Doljenko E. P., Sevastjyanov E. A., “Approximations with signsensitive weight (theorems of existence and uniqueness)”, Proceedings of the Russian Academy of Sciences. Series: “Mathematics”, 62:6 (1998), 59–102 (in Russian) | DOI | Zbl

[2] Doljenko E. P., Sevastjyanov E. A., “Approximations with signsensitive weight (stability, annexes to the theory of ears and Hausdorf approximations)”, Proceedings of the Russian Academy of Sciences. Series: “Mathematics”, 63:3 (1999), 77–118 (in Russian) | DOI | Zbl

[3] Ramazanov A.-R. K., “On direct and converse theorems of the theory of approximation in metrics of signsensitive weight”, Analysis Mathematica, 21 (1995), 191–212 (in Russian) | DOI | MR | Zbl

[4] Ibragimova B. M., “Estimation of polynomial approximations of functions over modulus of smoothness concerning signsensitive weight”, Mathematics, economics and education: abstracts of papers of the XXII International conference “Mathematics. Economics. Education”, Izd-vo SKNTs VSh IuFU, Rostov-on-Don, 2014, 78 (in Russian)

[5] Ramazanov A.-R. K., Magomedova V. G., Ibragimova B. M., “Comparison of the modulus of continuity of the first and second degree and estimates of polynomial approximations”, Vestnik of Dagestan State University, 2011, no. 6, 87–93 (in Russian)

[6] Ramazanov A.-R. K., Ibragimova B. M., “Nonsymmetrical integral modulus of continuity and analogue of the first theorem of Jackson”, Vestnik of Dagestan State University, 2010, no. 6, 51–54 (in Russian)

[7] Marchaud A., “Sur les derives et sur les differences des fonctions de veriables reeless”, J. Math. pures et appl., 6 (1927), 337–425 (in French) | MR | Zbl

[8] Dzyadyk V. K., Introduction in equalmesured approximation theory of functions by polynomia, Nauka, M., 1977, 512 pp. (in Russian)

[9] Timan A. F., Approximation theory of functions of the real variable, Fizmatgiz, M., 1961, 624 pp. (in Russian)