Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 76-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the numerical investigation of Boussinesq–Lòve mathematical model. Algorithm for finding numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation modeling longitudinal oscillations in a thin elastic rod with regard to transverse inertia was obtained on the basis of phase space method and by using finite differences method. This problem can be reduced to the Cauchy problem for Sobolev type equation of the second order, which is not solvable for arbitrary initial values. The constructed algorithm includes additional check if initial data belongs to the phase space. The algorithm is implemented as a program in Matlab. The results of numerical experiments are obtained both in regular and degenerate cases. The graphs of obtained solutions are presented in each case.
Keywords: Boussinesq–Lòve equation, Cauchy–Dirichlet problem, finite differences method, phase space, conditions of data consistency, system of difference equations
Mots-clés : Sobolev type equation, Thomas algorithm.
@article{VSGU_2015_6_a8,
     author = {A. A. Zamyshlyaeva and S. V. Surovtsev},
     title = {Finding of a numerical solution to the {Cauchy{\textendash}Dirichlet} problem for {Boussinesq{\textendash}L\`ove} equation using finite differences method},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {76--81},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a8/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - S. V. Surovtsev
TI  - Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 76
EP  - 81
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a8/
LA  - ru
ID  - VSGU_2015_6_a8
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A S. V. Surovtsev
%T Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 76-81
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a8/
%G ru
%F VSGU_2015_6_a8
A. A. Zamyshlyaeva; S. V. Surovtsev. Finding of a numerical solution to the Cauchy–Dirichlet problem for Boussinesq–Lòve equation using finite differences method. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 76-81. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a8/

[1] Lòve A., A treatise on the mathematical theory of elasticity, Translation from English by B. V. Bulgakov, ONTI, M.–L., 1935 (in Russian)

[2] Zamyshlyaeva A. A., “Higher-order Sobolev-type mathematical models”, Vestnik of South Ural State University. Ser.: “Mathematical modelling and programming”, 7:2 (2014), 5–28 (in Russian)

[3] Zamyshlyaeva A. A., Bychkov E. V., “Phase Space of the modified Boussinesq equation”, Vestnik of South Ural State University. Ser.: “Mathematical modelling and programming”, 18(277):12 (2012), 13–19 (in Russian)

[4] Zamyshlyaeva A. A., Yuzeeva A. V., “Initial-finite value problem for the Boussinesq–Love equation”, Vestnik of South Ural State University. Ser.: “Mathematical modelling and programming”, 16(192):5 (2010), 23–31 (in Russian)

[5] Zamyshlyaeva A. A., Tsyplenkova O. N., “Optimal control over solutions of the initial-finite value problem for the Boussinesq–Love equation”, Vestnik of South Ural State University. Ser.: “Mathematical modelling and programming”, 5(264):11 (2012), 13–24 (in Russian)

[6] Zamyshlyaeva A. A., Muravyev A. S., “Study of mathematical model of Boussinesq–Love”, Vestnik of Magnitogorsk State University. Ser.: “Mathematics”, 2013, no. 15, 24–34 (in Russian)

[7] Sviridyuk G. A., Sukacheva T. G., “Phase spaces of one class of semilinear equations of Sobolev type”, Differential equations, 26:2 (1990), 250–258 (in Russian) | Zbl