Inverse problems for the heat equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 62-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of finding initial conditions and the right-hand side had been studied for the inhomogeneous heat equation on the basis of formulas for the solution of the first initial-boundary value problem. A criterion of uniqueness of solution of the inverse problem for finding the initial condition was found with Spectral analysis. The right side of the heat equation is represented as a product of two functions, one of which depends on the spatial coordinates and the other from time. In one task, along with an unknown solution is sought factor on the right side, depending on the time, and in another — a factor that depends on the spatial coordinates. For these tasks, we prove uniqueness theorems, the existence and stability of solution.
Keywords: heat equation, first initial-boundary value problem, inverse problems, spectral method, integral equation, uniqueness, stability.
Mots-clés : existence
@article{VSGU_2015_6_a7,
     author = {A. R. Zaynullov},
     title = {Inverse problems for the heat equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {62--75},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/}
}
TY  - JOUR
AU  - A. R. Zaynullov
TI  - Inverse problems for the heat equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 62
EP  - 75
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/
LA  - ru
ID  - VSGU_2015_6_a7
ER  - 
%0 Journal Article
%A A. R. Zaynullov
%T Inverse problems for the heat equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 62-75
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/
%G ru
%F VSGU_2015_6_a7
A. R. Zaynullov. Inverse problems for the heat equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 62-75. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/

[1] Denisov A. M., Introduction to the theory of inverse problems, Izd-vo MGU, M., 1994, 208 pp. (in Russian)

[2] Kabanikhin S. I., Inverse and ill-posed problems, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009, 457 pp. (in Russian)

[3] Tikhonov A. N., Samaraskii A. N., Equations of mathematical physics, 3rd edition, Izd-vo Fizmatlit, M., 1966, 724 pp. (in Russian)

[4] Sabitov K. B., Equations of mathematical physics, Fizmatlit, M., 2013, 352 pp. (in Russian)

[5] Lavrentev M. A., Shabat B. V., Methods of the theory of complex variable, Nauka, M., 1973, 749 pp. (in Russian)

[6] Sabitov K. B., Safin E. M., “Inverse problem for a parabolic-hyperbolic type for rectangular area”, Proceedings of the Russian Academy of Sciences, 429:4 (2009), 451–454 (in Russian) | Zbl

[7] Sabitov K. B., Safin E. M., “Inverse problem for a mixed parabolic-hyperbolic type for a rectangular area”, News of Higher Educational Institutions. Mathematics, 2010, no. 4, 55–62 (in Russian)

[8] Sabitov K. B., Safin E. M., “Inverse problem for a mixed parabolic-hyperbolic type”, Mathematical notes, 87:6 (2010), 907–918 (in Russian) | DOI