Mots-clés : existence
@article{VSGU_2015_6_a7,
author = {A. R. Zaynullov},
title = {Inverse problems for the heat equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {62--75},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/}
}
A. R. Zaynullov. Inverse problems for the heat equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 62-75. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a7/
[1] Denisov A. M., Introduction to the theory of inverse problems, Izd-vo MGU, M., 1994, 208 pp. (in Russian)
[2] Kabanikhin S. I., Inverse and ill-posed problems, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009, 457 pp. (in Russian)
[3] Tikhonov A. N., Samaraskii A. N., Equations of mathematical physics, 3rd edition, Izd-vo Fizmatlit, M., 1966, 724 pp. (in Russian)
[4] Sabitov K. B., Equations of mathematical physics, Fizmatlit, M., 2013, 352 pp. (in Russian)
[5] Lavrentev M. A., Shabat B. V., Methods of the theory of complex variable, Nauka, M., 1973, 749 pp. (in Russian)
[6] Sabitov K. B., Safin E. M., “Inverse problem for a parabolic-hyperbolic type for rectangular area”, Proceedings of the Russian Academy of Sciences, 429:4 (2009), 451–454 (in Russian) | Zbl
[7] Sabitov K. B., Safin E. M., “Inverse problem for a mixed parabolic-hyperbolic type for a rectangular area”, News of Higher Educational Institutions. Mathematics, 2010, no. 4, 55–62 (in Russian)
[8] Sabitov K. B., Safin E. M., “Inverse problem for a mixed parabolic-hyperbolic type”, Mathematical notes, 87:6 (2010), 907–918 (in Russian) | DOI