Mots-clés : problem of Sturm–Liouville, infimum
@article{VSGU_2015_6_a6,
author = {S. S. Ezhak},
title = {On a minimization problem for a functional generated by the {Sturm{\textendash}Liouville} problem with integral condition on the potential},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {57--61},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/}
}
TY - JOUR AU - S. S. Ezhak TI - On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 57 EP - 61 IS - 6 UR - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/ LA - ru ID - VSGU_2015_6_a6 ER -
%0 Journal Article %A S. S. Ezhak %T On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2015 %P 57-61 %N 6 %U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/ %G ru %F VSGU_2015_6_a6
S. S. Ezhak. On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 57-61. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/
[1] Egorov Yu. V., Kondratiev V. A., “On Spectral theory of elliptic operators”, Operator theory: Advances and Applications, 89, Birkhäser Verlag, Basel–Boston, 1996, 1–325 | MR
[2] Egorov Yu. V., Kondratiev V. A., “Estimates for the first eigenvalue in some Sturm–Liouville problems”, Advances of Mathematical Sciences, 51:3(309) (1996), 73–144 (in Russian) | DOI | Zbl
[3] Egorov Yu. V., Kondratiev V. A., “Estimates for the first eigenvalue of the Sturm–Liouville problems”, Advances of Mathematical Sciences, 39:2(236) (1984), 151–152 (in Russian)
[4] Lyusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka, M., 1965 (in Russian)
[5] Mikhlin S. G., Variational methods in mathematical physics, Nauka, M., 1970 (in Russian)
[6] Ezhak S. S., “Extremal estimations for the minimum eigenvalue of the Sturm–Liouville problem with limited on potential”, Differential equations, 40:6 (2004), 856 (in Russian)
[7] Ezhak S. S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions”, Qualitative properties of solutions to the differential equations and related topics of spectral analysis, IuNITI-DANA, M., 2012, 517–559 (in Russian)
[8] Ezhak S. S., “On estimates for a the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, New York, 2013, 387–394 (in English) | DOI | MR | Zbl