On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 57-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider the minimization problem of the functional $R[Q,y]=\frac{\int_{0}^{1}y'^2dx- \int_{0}^{1}Q(x)y^2dx}{\int_{0}^{1}y^2dx}$ generated by a Sturm–Liouville problem with Dirichlet boundary conditions and with an integral condition on the potential. Estimation of the infimum of functional in some class of functions $y$ and $Q(x)$ is reduced to estimation of a nonlinear functional non depending on the potential $Q(x)$. This leads to related parameterized nonlinear boundary value problem. Upper and lower estimates for $\inf_{y\in H_{0}^{1}(0,1)}R[Q,y]$ are obtained for different values of parameter.
Keywords: variational problem, minimization of a functional, extremal estimates, spectral theory.
Mots-clés : problem of Sturm–Liouville, infimum
@article{VSGU_2015_6_a6,
     author = {S. S. Ezhak},
     title = {On a minimization problem for a functional generated by the {Sturm{\textendash}Liouville} problem with integral condition on the potential},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {57--61},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/}
}
TY  - JOUR
AU  - S. S. Ezhak
TI  - On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 57
EP  - 61
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/
LA  - ru
ID  - VSGU_2015_6_a6
ER  - 
%0 Journal Article
%A S. S. Ezhak
%T On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 57-61
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/
%G ru
%F VSGU_2015_6_a6
S. S. Ezhak. On a minimization problem for a functional generated by the Sturm–Liouville problem with integral condition on the potential. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 57-61. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a6/

[1] Egorov Yu. V., Kondratiev V. A., “On Spectral theory of elliptic operators”, Operator theory: Advances and Applications, 89, Birkhäser Verlag, Basel–Boston, 1996, 1–325 | MR

[2] Egorov Yu. V., Kondratiev V. A., “Estimates for the first eigenvalue in some Sturm–Liouville problems”, Advances of Mathematical Sciences, 51:3(309) (1996), 73–144 (in Russian) | DOI | Zbl

[3] Egorov Yu. V., Kondratiev V. A., “Estimates for the first eigenvalue of the Sturm–Liouville problems”, Advances of Mathematical Sciences, 39:2(236) (1984), 151–152 (in Russian)

[4] Lyusternik L. A., Sobolev V. I., Elements of functional analysis, Nauka, M., 1965 (in Russian)

[5] Mikhlin S. G., Variational methods in mathematical physics, Nauka, M., 1970 (in Russian)

[6] Ezhak S. S., “Extremal estimations for the minimum eigenvalue of the Sturm–Liouville problem with limited on potential”, Differential equations, 40:6 (2004), 856 (in Russian)

[7] Ezhak S. S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions”, Qualitative properties of solutions to the differential equations and related topics of spectral analysis, IuNITI-DANA, M., 2012, 517–559 (in Russian)

[8] Ezhak S. S., “On estimates for a the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, Springer Proceedings in Mathematics and Statistics, 47, New York, 2013, 387–394 (in English) | DOI | MR | Zbl