On representation of modular forms as homogeneous polynomials
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 40-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we study the spaces of modular forms such that each element of them is a homogeneous polynomial of modular forms of low weights of the same level. It is a classical fact that it is true for the level 1. N. Koblitz point out that it is true for cusp forms of level 4. In this article we show that the analogous situation takes place for the levels corresponding to the eta-products with multiplicative coefficients. In all cases under consideration the base functions are eta-products. In each case the base functions are written explicitly. Dimensions of spaces are calculated by the Cohen–Oesterle formula, the orders in cusps are calculated by the Biagioli formula.
Keywords: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, divisor of function, structure theorems, Cohen–Oesterle formula.
@article{VSGU_2015_6_a4,
     author = {G. V. Voskresenskaya},
     title = {On representation of modular forms as homogeneous polynomials},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {40--49},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a4/}
}
TY  - JOUR
AU  - G. V. Voskresenskaya
TI  - On representation of modular forms as homogeneous polynomials
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 40
EP  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a4/
LA  - ru
ID  - VSGU_2015_6_a4
ER  - 
%0 Journal Article
%A G. V. Voskresenskaya
%T On representation of modular forms as homogeneous polynomials
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 40-49
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a4/
%G ru
%F VSGU_2015_6_a4
G. V. Voskresenskaya. On representation of modular forms as homogeneous polynomials. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 40-49. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a4/

[1] Koblitz N., Introduction in elliptic curves and modular forms, Mir, M., 1988, 320 pp. (in Russian)

[2] Knapp A., Elliptic curves, Faktorial Press, M., 2004, 488 pp. (in Russian)

[3] Gordon B., Sinor D., “Multiplicative properties of $\eta$-products”, L.N.M., 1395 (1987), 173–200 (in English) | MR

[4] Ono K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, A.M.S., Providence, 2004, 216 pp. (in English) | MR | Zbl

[5] Dummit D., Kisilevsky H., MasKay J., “Multiplicative products of $\eta$-functions”, Contemp. Math., 45 (1985), 89–98 (in English) | DOI | MR | Zbl

[6] Voskresenskaya G. V., “One special class of modular forms and group representations”, Journal de Theorie des Nombres de Bordeaux, 11 (1999), 247–262 (in English) | DOI | MR | Zbl

[7] Cohen H., Oesterle J., “Dimensions des espaces de formes modulaires”, L.N.M., 627 (1976), 69–78 (in English) | MR

[8] Voskresenskaya G. V., “On spaces of modular forms of even weight”, Vestnik of Samara State University. Natural Sciences Series, 121:10 (2014), 38–47 (in Russian) | Zbl

[9] Biagioli A. J. F., “The construction of modular forms as products of transforms of the Dedekind eta-function”, Acta Arithm., LIV:4 (1990), 273–300 (in English) | MR | Zbl

[10] Martin Y., “On Hecke operators and products of the Dedekind $\eta$-function”, C.R. Acad. Paris, 322 (1996), 307–312 (in English) | MR | Zbl