Monte-Carlo calculations of phase transition temperature in the Ising model with long range interactions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 161-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with two-dimensional and three-dimensional Ising models with the long-range spin interactions. The intensity of interaction between the spins relies decreasing with distance $r$ as a power law $r^{-d-\sigma}$ with dimensional $d$ and parameter $\sigma$. The research are conducted by Monte-Carlo method with Metropolis algorithm using parallel computing techniques. On the basis of numerical simulation the dependence of the phase transition temperature on the parameter $\sigma$ is found. It is shown that at phase transition temperature decreases with increasing $\sigma$.
Keywords: Ising model, long-range interactions, interaction radius, critical temperature, Monte-Carlo method.
Mots-clés : phase transition
@article{VSGU_2015_6_a21,
     author = {A. A. Biryukov and Ya. V. Degtyarova},
     title = {Monte-Carlo calculations of phase transition temperature in the {Ising} model with long range interactions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {161--170},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a21/}
}
TY  - JOUR
AU  - A. A. Biryukov
AU  - Ya. V. Degtyarova
TI  - Monte-Carlo calculations of phase transition temperature in the Ising model with long range interactions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 161
EP  - 170
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a21/
LA  - ru
ID  - VSGU_2015_6_a21
ER  - 
%0 Journal Article
%A A. A. Biryukov
%A Ya. V. Degtyarova
%T Monte-Carlo calculations of phase transition temperature in the Ising model with long range interactions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 161-170
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a21/
%G ru
%F VSGU_2015_6_a21
A. A. Biryukov; Ya. V. Degtyarova. Monte-Carlo calculations of phase transition temperature in the Ising model with long range interactions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 161-170. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a21/

[1] Ising E., Beitrag zur Theorie des Ferro- und Paramagnetimus, Hamburg, 1924 (in German)

[2] Onsager L., “Crystalstatistics. A two-dimensional model with order-disorder transitions”, Phys. Rev., 1944 (in English) | MR

[3] Yang C. N., “The Spontaneous Magnetization of a Two-Dimensional Ising Model”, Phys. Rev., 85 (1952), 808–816 (in English) | DOI | MR | Zbl

[4] Binder K., Heermann D. W., Monte Carlo simulation in statistical physics, Nauka, M., 1995, 144 pp. (in Russian)

[5] Biryukov A. A., Degtyarova Ya. V., Shleenkov M. A., “Computer simulation of the Ising model in the external magnetic field”, Vestnik of young scientists and specialists of SamSU, 1 (2012), 78–82 (in Russian)

[6] Murtazaev A. K., Kamilov I. K., Babaev A. B., “Critical behavior of the three-dimensional Ising model with the quenched disorder in the cubic lattice”, JETP, 126 (2004), 1377–1383 (in Russian)

[7] Prudnikov V. V., Prudnikov P. V., Vakilov A. N., Krinitsin A. S., “Computer simulation of critical behavior of three-dimentional disordered Ising model”, JETP, 132:2(8) (2007), 417–425 (in Russian)

[8] Picco M., Critical behavior of the Ising model with long range interactions, 2012, arXiv: (in English) 1207.1018v1

[9] Blanchard T., Picco M., Rajapbour M. A., Influence of long-range interactions on the critical behavior of the Ising model, 2013, arXiv: (in English) 1211.6758v3

[10] Ramirez-Pastor A. J., Nieto F., “Ising lattices with $\pm J$ second-nearest-neighbor interactions”, Phys. Rev., 55:21 (1997), 14323–14329 (in English) | DOI

[11] A. dos Anjos Rosana et al., “Three-dimensional Ising model with nearest- and next-nearest-neighbor interactions”, Phys. Rev. E, 76 (2007), 022103 (in English)

[12] Cirillo Emilio N. M., Gonnella G., Pelizzola A., “Critical behavior of the three-dimensional Ising model with nearest-neighbor, next-nearest-neighbor, and plaquette interactions”, Phys. Rev. E, 55:1 (1997), R17–R20 (in English) | DOI

[13] Fisher M. E., Ma Sh., Nickel B. G., “Critical exponents for long-range interactions”, Phys. Rev. Lett., 29:14 (1972), 917–920 (in English) | DOI

[14] Ferdinand A. E., Fisher M. E., “Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice”, Phys. Rev., 185:2 (1969), 832–846 (in English) | DOI

[15] Fisher M. E., Barder M. N., “Scaling theory for the finite-size effects in the critical region”, Phys. Rev. Lett., 28:23 (1972), 1516–1519 (in English) | DOI

[16] Murtazaev A. K., Kamilov I. K., Magomedov M. A., “Cluster Monte Carlo algorithms, finite-size scaling and critical exponents of the complex lattice models”, ZhTEF, 120:6 (2001), 1535–1543 (in Russian)

[17] Loison D., “Monte-Carlo cluster algorithm for ferromagnetic Hamiltonians $H=J \sum{(S_i S_j)^3}$”, Phys. Lett. A, 257 (1999), 83–87 (in English) | DOI

[18] Kamilov I. K., Murtazaev A. K., Aliev Kh. A., “Monte Carlo studies of phase transitions and critical phenomena”, Advances in Physical Sciences, 169:7 (1999), 773–795 (in Russian) | DOI

[19] Binder K., “Critical Properties from Monte Carlo Coarse Graining and Renormalization”, Phys. Rev. Lett., 47:9 (1981), 693–696 (in English) | DOI

[20] Biryukov A. A., Degtyarova Y. V., “Ising model with long-range interactions in the external magnetic field”, XII All-Russian youth Samara competition-conference of scientific works on optics and laser physics, Collection of competitive reports (Samara, 12–15 November, 2014), Federal'noe gosudarstvennoe biudzhetnoe uchrezhdenie nauki Fizicheskii institut im. P. N. Lebedeva RAN, M., 49–54 (in Russian)