Estimates of positive nontrivial solutions of a differential equation with power nonlinearity
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 23-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Differential equations $$ y^{[n]}=r_n(x)\frac{d}{dx}\left( r_{n-1}(x)\frac{d}{dx}\left(\ldots\left( r_0(x) y\frac{}{} \right)\right)\ldots\right)=(-1)^np(x)|y|^k $$ and $$ y^{(n)}=(-1)^np(x)|y|^k $$ with power nonlinearity are considered. Solutions which are defined in some neighborhood of plus infinity are called proper solutions. It is proved that proper solution to the equation is kneser solution, which means that solution and it’s quasiderivatives change their signs and tend to zero. The integral representation for proper solutions is proved. Upper estimates for solution and it’s quasiderivatives for proper solutions with maximal interval of existence is positive semiaxis to the equation with quasiderivative are proved. Upper and lower estimates of solution and it’s derivatives for proper solutions with maximal interval of existence is positive semiaxis to the equation with derivative are proved.
Keywords: Emden–Fowler equation, estimates of solutions to the nonlinear defferential equation, quasiderivative.
@article{VSGU_2015_6_a2,
     author = {D. A. Bezukhov},
     title = {Estimates of positive nontrivial solutions of a differential equation with power nonlinearity},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {23--26},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a2/}
}
TY  - JOUR
AU  - D. A. Bezukhov
TI  - Estimates of positive nontrivial solutions of a differential equation with power nonlinearity
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 23
EP  - 26
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a2/
LA  - ru
ID  - VSGU_2015_6_a2
ER  - 
%0 Journal Article
%A D. A. Bezukhov
%T Estimates of positive nontrivial solutions of a differential equation with power nonlinearity
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 23-26
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a2/
%G ru
%F VSGU_2015_6_a2
D. A. Bezukhov. Estimates of positive nontrivial solutions of a differential equation with power nonlinearity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 23-26. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a2/

[1] Kondratiev V. A., Samovol V. S., “On some asymptotic properties of solutions for the Emden-Fowler type equations”, Differential equations, 17:4 (1981), 749–750 (in Russian)

[2] Kvinikadze G. G., “On singular solutions to nonlinear ordinary differential equations”, Proceedings of the Institute of Applied Mathematics named after I. N. Vekua seminar, 17, TSU, Tbilisi, 1983, 36–49 (in Russian) | Zbl

[3] Astashova I. V., “Qualitative properties of solutions to quasilinear ordinary differential equations”, Qualitative properties of solutions to differential equations and related topics of spectral analysis, scientific edition, ed. I. V. Astashkina, UNITY-DANA, M., 2012, 22–290 (in Russian)

[4] Kozlov V. A., “On Kneser solutions of higher order nonlinear ordinary differential equations”, Ark. Mat., 37:2 (1999), 305–322 (in English) | DOI | MR | Zbl