About numerical modelling of Thomson self-oscillatory systems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 141-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm of numerical integration of a task of Cauchy for the equations of the movement of self-oscillatory systems of Thomson type is offered. The algorithm is based on the use of samples of impulse response of linear resonant system as discretization sequences at the transition to the discrete time in the integral form of the equations of motion. Estimates of an error of numerical decisions are given. Transformation of finite difference algorithm in object of nonlinear dynamics in discrete time is discussed. Version of discrete mapping of Van der Pol oscillator is proposed.
Keywords: self-oscillatory system, Volterra integral equation, impulse response of resonator, finite difference algorithm, nonlinear dynamics in discrete time, discrete mapping of Van der Pol oscillator.
@article{VSGU_2015_6_a19,
     author = {V. V. Zaitsev and A. V. Karlov and Ar. V. Karlov},
     title = {About numerical modelling of {Thomson} self-oscillatory systems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {141--150},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a19/}
}
TY  - JOUR
AU  - V. V. Zaitsev
AU  - A. V. Karlov
AU  - Ar. V. Karlov
TI  - About numerical modelling of Thomson self-oscillatory systems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 141
EP  - 150
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a19/
LA  - ru
ID  - VSGU_2015_6_a19
ER  - 
%0 Journal Article
%A V. V. Zaitsev
%A A. V. Karlov
%A Ar. V. Karlov
%T About numerical modelling of Thomson self-oscillatory systems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 141-150
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a19/
%G ru
%F VSGU_2015_6_a19
V. V. Zaitsev; A. V. Karlov; Ar. V. Karlov. About numerical modelling of Thomson self-oscillatory systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 141-150. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a19/

[1] V. V. Migulin (ed.), Fundamentals of vibration theory, Nauka, M., 1978, 392 pp. (in Russian)

[2] Bogolyubov N. N., Mitropolsky Yu. A., Asymptotic methods in the theory of non-linear oscillations, Nauka, M., 1974, 504 pp. (in Russian)

[3] Nayfe A., Introduction to perturbation methods, Mir, M., 1984, 536 pp. (in Russian)

[4] Hairer E., Nersett S., Wanner G., Solving of ordinary differential equations. Nonrigid problems, Mir, M., 1990, 512 pp. (in Russian)

[5] Zaitsev V. V., Zaitsev O. V., Nikulin V. V., “Integral models of self-oscillating systems”, Physics of wave processes and radio systems, 9:1 (2006), 53–57 (in Russian)

[6] Zaitsev V. V., Zaitsev O. V., Karlov A. V., Karlov A. V. (junior), “Discrete-time oscillators produced by Thomson autooscillator systems”, Physics of wave processes and radio systems, 11:4 (2008), 98–103 (in Russian)

[7] Mishchenko E. F. et al., Many face of chaos, Fizmatlit, M., 2013, 432 pp. (in Russian)

[8] Malakhov A. N., Fluctuations in self-oscillating systems, Nauka, M., 1968, 660 pp. (in Russian)