On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 135-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the investigation of an eigenvalue problem for the Laplace operator with Robin boundary condition in a bounded domain with smooth boundary. The case of boundary condition containing a real parameter is considered. It is proved that multiplicity of the eigenvalue to the Robin problem for all values of the parameter greater than some number does not exceed the multiplicity of the corresponding eigenvalue to the Dirichlet problem for the Laplace operator. For simple eigenvalue of the Dirichlet problem the convergence of eigenfunction of the Robin problem to the eigenfunction of the Dirichlet problem for unlimited increase of the parameter is proved. The formula for derivative on the parameter for eigenvalues of the Robin problem is established. This formula is used to justify the asymptotic expansions of eigenvalues of the Robin problem for large positive values of the parameter.
Keywords: boundary value problem, boundary condition, parameter, eigenvalues, asymptotic expansions.
@article{VSGU_2015_6_a18,
     author = {A. V. Filinovskiy},
     title = {On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {135--140},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a18/}
}
TY  - JOUR
AU  - A. V. Filinovskiy
TI  - On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 135
EP  - 140
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a18/
LA  - ru
ID  - VSGU_2015_6_a18
ER  - 
%0 Journal Article
%A A. V. Filinovskiy
%T On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 135-140
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a18/
%G ru
%F VSGU_2015_6_a18
A. V. Filinovskiy. On the asymptotic behavior of eigenvalues of the boundary value problem with a parameter. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 135-140. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a18/

[1] Courant R., Hilbert D., Methods of mathematical physics, v. I, GTTI, M., 1951, 476 pp. (in Russian)

[2] Sperb R., “Untere und obere schranken für den tiefsten eigenwert elastisch gestützen membran”, Z. Angew. Math. Phys., 23:2 (1972), 231–244 (in German) | DOI | MR | Zbl

[3] Filinovskiy A. V., “On the eigenvalues of a Robin problem with a large parameter”, Math. Bohem., 139:2 (2014), 341–352 (in English) | MR | Zbl

[4] Filinovskiy A. V., “Estimates of eigenvalues of a boundary value problem with a parameter”, Math. Commun., 19:3 (2014), 531–543 (in English) | MR

[5] Filinovskiy A. V., “On the estimates of eigenvalues of the boundary value problem with large parameter”, Tatra Mt. Math. Publ., 63 (2015), 101–103 (in English) | MR

[6] Filinovskiy A. V., “Asymptotic behaviour of the first eigenvalue of the Robin problem”, Differential equations, 47:11 (2011), 1659–1660 (in Russian)

[7] Filinovskiy A. V., “On the asymptotic behaviour of the first eigenvalue of Robin problem with large parameter”, J. Elliptic and Parabolic Equ., 1:1 (2015), 123–135 (in English) | DOI | MR

[8] Kato T., Perturbation theory for linear operators, Mir, M., 1972, 740 pp. (in Russian)

[9] Mikhailov V. P., Partial differential equations, Nauka, M., 1983, 424 pp. (in Russian)