On the upper estimates for the first eigenvalue of a Sturm–Liouville problem with a weighted integral condition
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 124-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a problem for which the origin problem was a problem known as the Lagrange problem or the problem on finding the form of the firmest column of the given volume is viewed. The Lagrange problem was the source for different extremal eigenvalue problems, among them for eigenvalue problems for the second-order differential equations, with an integral condition on the potential. In this paper the problem of that kind is considered under the condition that the integral condition contains a weight function. The method of finding the sharp upper estimates for the first eigenvalue of a Sturm–Liouville problem with Dirichlet conditions for some values of parameters in the integral condition was found and attainability of those estimates was proved.
Mots-clés : Sturm–Liouville problem
Keywords: estimates for the first eigenvalue, Dirichlet conditions, weighted integral condition, variational principle, eigenvalue problem, boundary value problem, extremal values of the functional.
@article{VSGU_2015_6_a16,
     author = {M. Yu. Telnova},
     title = {On the upper estimates for the first eigenvalue of a {Sturm{\textendash}Liouville} problem with a weighted integral condition},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {124--129},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a16/}
}
TY  - JOUR
AU  - M. Yu. Telnova
TI  - On the upper estimates for the first eigenvalue of a Sturm–Liouville problem with a weighted integral condition
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 124
EP  - 129
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a16/
LA  - ru
ID  - VSGU_2015_6_a16
ER  - 
%0 Journal Article
%A M. Yu. Telnova
%T On the upper estimates for the first eigenvalue of a Sturm–Liouville problem with a weighted integral condition
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 124-129
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a16/
%G ru
%F VSGU_2015_6_a16
M. Yu. Telnova. On the upper estimates for the first eigenvalue of a Sturm–Liouville problem with a weighted integral condition. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 124-129. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a16/

[1] Osmolovsky V. G., Nonlinear Sturm–Liouville problem, Textbook, Izdatel'stvo Sankt-Peterburgskogo gosudarstvennogo universiteta, St. Petersburg, 2003, 260 pp. (in Russian)

[2] Egorov Yu. V., Kondratiev V. A., “On Spectral theory of elliptic operators”, Operator theory: Advances and Applications, 89 (1996), 1–325 (in English) | MR

[3] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear elliptic equations, Nauka, M., 1973, 736 pp. (in Russian)

[4] Lyusternik L. A., Sobolev V. I., Elements of functional analysis, Frederick Ungar Publishing Co, New York, 1961 (in English) | MR | Zbl

[5] Mikhlin S. G., Linear partial differential equations, Manual for college-graduates, Vysshaya shkola, M., 1977, 431 pp. (in Russian)

[6] Ezhak S. S., Karulina E. S., Telnova M. Yu., “Estimates for the minimal eigenvalue of some Sturm–Liouville problems with an integral condition”, Qualitative properties of solutions to the differential equations and related topics of spectral analysis, scientific edition, ed. Astashova I. V., UNITY–DANA, M., 2012, 506–647 (in Russian)