On solutions of traveling wave type for a nonlinear parabolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 110-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Kolmogorov–Petrovsky–Piskunov equation which is a quasilinear parabolic equation of second order appearing in the flame propagation theory and in modeling of certain biological processes. An analytical construction of self-similar solutions of traveling wave kind is presented for the special case when the nonlinear term of the equation is the product of the argument and a linear function of a positive power of the argument. The approach to the construction of solutions is based on the study of singular points of analytic continuation of the solution to the complex domain and on applying the Fuchs–Kovalevskaya–Painlevé test. The resulting representation of the solution allows an efficient numerical implementation.
Keywords: Kolmogorov–Petrovsky–Piskunov equation, equation of Fujita type, generalized Fisher equation, Abel equation of the second kind, intermediate asymptotic regime, traveling waves, analytic continuation, movable and fixed singular points, algebraic branch points, dead core solution, Fuchs–Kowalewski method.
Mots-clés : Puiseux series, explicit solution, Painlevé test
@article{VSGU_2015_6_a14,
     author = {S. V. Pikulin},
     title = {On solutions of traveling wave type for a nonlinear parabolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {110--116},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a14/}
}
TY  - JOUR
AU  - S. V. Pikulin
TI  - On solutions of traveling wave type for a nonlinear parabolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 110
EP  - 116
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a14/
LA  - ru
ID  - VSGU_2015_6_a14
ER  - 
%0 Journal Article
%A S. V. Pikulin
%T On solutions of traveling wave type for a nonlinear parabolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 110-116
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a14/
%G ru
%F VSGU_2015_6_a14
S. V. Pikulin. On solutions of traveling wave type for a nonlinear parabolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 110-116. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a14/

[1] Zeldovich Ya. B., Barenblatt G. I., Librovich V. B., Makhviladze G. M., Mathematical theory of combustion and explosions, Nauka, M., 1980, 478 pp. (in Russian)

[2] Bunkin F. V., Konov V. I., Prokhorov A. M., Fedorov V. B., “Laser Spark in the “Slow Combustion” regime”, JETP Letters, 9:11 (1969), 609–612 (in Russian)

[3] Kolmogorov A. N., Petrovskii I. G., Piscounov I. S., “Study of diffusion equation coupled to the increase of the amount of substance and its application to one biological problem”, Bulletin of Moscow State University. Section A, 1:6 (1937), 1–25 (in Russian)

[4] Fisher R. A., “The wave of advance of advantageous genes”, Ann. Eug., 1937, no. 7, 355–369 (in English) | DOI | Zbl

[5] Kamke E., Reference book on ordinary differential equations, Nauka, M., 1976, 576 pp. (in Russian)

[6] Nemytskii V. V., Stepanov V. V., Qualitative theory of differential equations, Editorial URSS, M., 2004, 552 pp. (in Russian)

[7] Golubev V. V., Lectures on analytical theory of differential equations, Gostekhizdat, M., 1950, 436 pp. (in Russian)

[8] Goriely A. I, ntegrability and singularity, R D., M.–Izhevsk, 2006, 315 pp. (in Russian)

[9] Ablowitz M., Zeppetella A., “Explicit solutions of Fisher's equation for a special wave speed”, Bulletin of Mathematical Biology, 41:6 (1979), 835–840 (in English) | DOI | MR | Zbl

[10] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical modelling of heat and mass transfer processes, Nauka, M., 1987, 352 pp. (in Russian)