Mots-clés : reconstruction, sparse signal, Poisson formula.
@article{VSGU_2015_6_a13,
author = {S. Ya. Novikov and M. E. Fedina},
title = {Uncertainty principles for groups and reconstruction of signals},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {102--109},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/}
}
TY - JOUR AU - S. Ya. Novikov AU - M. E. Fedina TI - Uncertainty principles for groups and reconstruction of signals JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 102 EP - 109 IS - 6 UR - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/ LA - ru ID - VSGU_2015_6_a13 ER -
S. Ya. Novikov; M. E. Fedina. Uncertainty principles for groups and reconstruction of signals. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 102-109. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/
[1] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser, Boston–Basel–Berlin, 2000, 360 pp.
[2] Rudin U., Functional analysis, Mir, M., 1975, 443 pp. (in Russian)
[3] Pontryagin L. S., Continuous groups, Nauka. Fizmatlit, M., 1973, 527 pp. (in Russian)
[4] Donoho D. L., Stark P. B., Edidin D., “Uncertainty principles and signal recovery”, Journal Applied Mathematics (SIAM), 49:3 (1989), 906–931 | MR | Zbl
[5] Tao T., “An uncertainty principle for cyclic groups of prime order”, Mathematical Research Letters, 12 (2005), 121–127 | DOI | MR | Zbl
[6] Candes E. J., Romberg J., Tao T., “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information”, IEEE Trans. Inform. Theory, 52 (2004), 489–509 | DOI | MR