Uncertainty principles for groups and reconstruction of signals
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 102-109
Voir la notice de l'article provenant de la source Math-Net.Ru
Uncertainty principles of harmonic analysis and their analogues for finite abelian groups are considered in the paper. Special attention is paid to the recent results of T. Tao and coauthors about cyclic groups of prime order. It is shown, that indicator functions of subgroups of finite Abelian groups are analogues of Gaussian functions. Finite-dimensional version of Poisson summation formula is proved. Opportunities of application of these results for reconstruction of discrete signals with incomplete number of coefficients are suggested. The principle of partial isometric whereby we can determine the minimum number of measurements for stable recovery of the signal are formulated.
Keywords:
uncertainty principles, cyclic finite groups, indicator functions
Mots-clés : reconstruction, sparse signal, Poisson formula.
Mots-clés : reconstruction, sparse signal, Poisson formula.
@article{VSGU_2015_6_a13,
author = {S. Ya. Novikov and M. E. Fedina},
title = {Uncertainty principles for groups and reconstruction of signals},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {102--109},
publisher = {mathdoc},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/}
}
TY - JOUR AU - S. Ya. Novikov AU - M. E. Fedina TI - Uncertainty principles for groups and reconstruction of signals JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 102 EP - 109 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/ LA - ru ID - VSGU_2015_6_a13 ER -
S. Ya. Novikov; M. E. Fedina. Uncertainty principles for groups and reconstruction of signals. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 102-109. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/