Uncertainty principles for groups and reconstruction of signals
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 102-109

Voir la notice de l'article provenant de la source Math-Net.Ru

Uncertainty principles of harmonic analysis and their analogues for finite abelian groups are considered in the paper. Special attention is paid to the recent results of T. Tao and coauthors about cyclic groups of prime order. It is shown, that indicator functions of subgroups of finite Abelian groups are analogues of Gaussian functions. Finite-dimensional version of Poisson summation formula is proved. Opportunities of application of these results for reconstruction of discrete signals with incomplete number of coefficients are suggested. The principle of partial isometric whereby we can determine the minimum number of measurements for stable recovery of the signal are formulated.
Keywords: uncertainty principles, cyclic finite groups, indicator functions
Mots-clés : reconstruction, sparse signal, Poisson formula.
@article{VSGU_2015_6_a13,
     author = {S. Ya. Novikov and M. E. Fedina},
     title = {Uncertainty principles for groups and reconstruction of signals},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {102--109},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/}
}
TY  - JOUR
AU  - S. Ya. Novikov
AU  - M. E. Fedina
TI  - Uncertainty principles for groups and reconstruction of signals
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 102
EP  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/
LA  - ru
ID  - VSGU_2015_6_a13
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%A M. E. Fedina
%T Uncertainty principles for groups and reconstruction of signals
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 102-109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/
%G ru
%F VSGU_2015_6_a13
S. Ya. Novikov; M. E. Fedina. Uncertainty principles for groups and reconstruction of signals. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 102-109. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a13/