Numerical investigation of the generalized Hoff model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 93-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the numerical investigation of the generalized Hoff model. Hoff equation models the dynamics of buckling construction of I-beams under a constant load. Result of existence and uniqueness of solution to the Showalter–Sidorov problem for the investigated model is formulated. This equation is a semilinear Sobolev type equation. Sobolev type equations constitute a vast area of non-classical equations of mathematical physics. Based on the theoretical results there was developed the algorithm of numerical solution of the problem.
Keywords: Hoff equation, numerical modelling, Galerkin's method, Showalter–Sidorov problem, weak generalized solution, monotone operators, monotone method.
Mots-clés : Sobolev type equations
@article{VSGU_2015_6_a11,
     author = {N. A. Manakova and K. V. Vasyuchkova},
     title = {Numerical investigation of the generalized {Hoff} model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {93--97},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a11/}
}
TY  - JOUR
AU  - N. A. Manakova
AU  - K. V. Vasyuchkova
TI  - Numerical investigation of the generalized Hoff model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 93
EP  - 97
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a11/
LA  - ru
ID  - VSGU_2015_6_a11
ER  - 
%0 Journal Article
%A N. A. Manakova
%A K. V. Vasyuchkova
%T Numerical investigation of the generalized Hoff model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 93-97
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a11/
%G ru
%F VSGU_2015_6_a11
N. A. Manakova; K. V. Vasyuchkova. Numerical investigation of the generalized Hoff model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 93-97. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a11/

[1] Hoff N. J., “Creep Buckling”, Journal of the Aeronautical Sciences, 1956, no. 7, 1–20 (in English)

[2] Sviridyuk G. A., “Quasistationary trajectories of semilinear dynamical equations of Sobolev type”, Proceedings of the Russian Academy of Sciences. Series Mathematics, 57:3 (1993), 192–207 (in Russian) | Zbl

[3] Sviridyuk G. A., Sukacheva T. G., “Galerkin approximations of singular nonlinear equations of Sobolev type”, News of Higher Educational Institutions. Mathematics, 1989, no. 10, 44–47 (in Russian)

[4] Manakova N. A., “On a model of optimal control of the Oskolkov equation”, Vestnik of South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 27(127):2 (2008), 63–70 (in Russian)

[5] Bayazitova A. A., “Hoff's Model on a Geometric Graph. Simulations”, Vestnik of South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2015), 84–93 (in Russian)

[6] Sviridyuk G. A., Manakova N. A., “An optimal control problem for the Hoff equation. Sibirskii zhurnal industrial'noi matematiki”, Journal of Applied and Industrial Mathematics, 8:2 (2005), 144–151