On the maximum principle for a class of nonlinear parabolic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 89-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider solutions of nonlinear parabolic equations in the half-space. It is well-known that, in the case of linear equations, one needs to impose additional conditions on solutions for the validity of the maximum principle. The most famous of them are the conditions of Tikhonov and Täcklind. We show that such restrictions are not needed for a wide class of nonlinear equations. In so doing, the coefficients of lower-order derivatives can grow arbitrarily as the spatial variables tend to infinity. We give an example which demonstrates an application of the obtained results for nonlinearities of the Emden–Fowler type.
Mots-clés : parabolic equations, Täcklind's condition.
Keywords: maximum principle, nonlinear differential operators, Tikhonov's condition
@article{VSGU_2015_6_a10,
     author = {A. A. Kon'kov},
     title = {On the maximum principle for a class of nonlinear parabolic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {89--92},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a10/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On the maximum principle for a class of nonlinear parabolic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 89
EP  - 92
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a10/
LA  - ru
ID  - VSGU_2015_6_a10
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On the maximum principle for a class of nonlinear parabolic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 89-92
%N 6
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a10/
%G ru
%F VSGU_2015_6_a10
A. A. Kon'kov. On the maximum principle for a class of nonlinear parabolic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 89-92. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a10/

[1] Il'in A.M., Kalashnikov A. S., Oleinik O. A., “Linear equations of the second order of parabolic type”, Russian Mathematical Surveys, 17:3 (1962), 3–146 (in Russian)

[2] Kondratiev V. A., “On asymptotic behavior of solutions of nonlinear second-order parabolic equations”, Proceedings of Steklov Mathematical Institute, RAS, 260 (2008), 172–184 | DOI | MR | Zbl

[3] Kondratiev V. A., Landis E. M., “Qualitative theory of second order linear partial differential equations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32, VINITI, M., 1988, 99–215 (in Russian)

[4] Kon'kov A. A., “Stabilization of solutions of the nonlinear Fokker–Planck equation”, Proceedings of the seminar named after I. G. Petrovsky, 197:3 (2014), 358–366 (in Russian) | MR | Zbl

[5] Kon'kov A. A., “On the asymptotic behaviour of solutions of nonlinear parabolic equations”, Proc. Royal Soc. Edinburgh, 136 (2006), 365–384 (in English) | DOI | MR | Zbl

[6] Landis E. M., Second-order equations of elliptic and parabolic type, Nauka, M., 1971 (in Russian)

[7] Täsklind S., “Sur les classes quasianalytiques des solutions des équations aux dérivêes partielles du type parabolique”, Nova Acta Soc. Sci. Uppsal. Ser. 10, 4:3 (1936), 1–57 (in English)

[8] Tychonoff A., “Théorèmes d'unicité pour l'équation de la chaleur”, Mathematical collected book, 42:2 (1935), 199–216 (in French) | Zbl