On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 12-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Existence and behavior of oscillatory solutions to nonlinear equations with regular and singular power nonlinearity are investigated. In particular, the existence of oscillatory solutions is proved for the equation \begin{gather*} y^{(n)}+P(x,y,y',\ldots,y^{(n-1)})|y|^k\ {\rm sign}\,y=0,\\ n\ge 2,\,\,\,k\in \mathbb {R},\,\,\, k>1,\,\,\, P\neq0,\,\,\,\,P\in C(\mathbb{R}^{n+1}). \end{gather*} A criterion is formulated for oscillation of all solutions to the quasilinear even-order differential equation \begin{gather*} y^{(n)}+\sum_{i=0}^{n-1}a_{j}(x)\;y^{(i)}+p(x)\;|y|^{k} {\rm sign} y=0,\\ p\in C(\mathbb{R}),\,\,a_j\in C(\mathbb{R}),\,\,\,j=0,\dots,{n-1},\,\,\, k>1,\,\, n=2m,\,\, m\in\mathbb{N}, \end{gather*} which generalizes the well-known Atkinson's and Kiguradze's criteria. The existence of quasi-periodic solutions is proved both for regular ($k>1$) and singular ($0$) nonlinear equations $$ y^{(n)}+p_0\,|y|^{k} {\rm sign} y=0, \quad n>2,\quad k\in \mathbb {R},\quad k>0,\,\,\,k\neq1, \quad p_0\in \mathbb {R}, $$ with $(-1)^{n}p_0>0.$ A result on the existence of periodic oscillatory solutions is formulated for this equation with $n=4,\,\,k>0,\,\,k\neq1,\,\,p_00.$
Keywords: quasilinear differential equation, power nonlinearity, oscillatory solution, oscillatory criterion, periodic solutions, quasi-periodic solutions.
@article{VSGU_2015_6_a1,
     author = {I. V. Astashova},
     title = {On oscillation of solutions to quasi-linear {Emden--Fowler} type higher-order differential equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {12--22},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/}
}
TY  - JOUR
AU  - I. V. Astashova
TI  - On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 12
EP  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/
LA  - ru
ID  - VSGU_2015_6_a1
ER  - 
%0 Journal Article
%A I. V. Astashova
%T On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 12-22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/
%G ru
%F VSGU_2015_6_a1
I. V. Astashova. On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 12-22. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/