On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 12-22
Voir la notice de l'article provenant de la source Math-Net.Ru
Existence and behavior of oscillatory solutions to nonlinear equations with regular and singular power nonlinearity are investigated. In particular, the existence of oscillatory solutions is proved for the equation
\begin{gather*}
y^{(n)}+P(x,y,y',\ldots,y^{(n-1)})|y|^k\ {\rm sign}\,y=0,\\
n\ge 2,\,\,\,k\in \mathbb {R},\,\,\, k>1,\,\,\, P\neq0,\,\,\,\,P\in C(\mathbb{R}^{n+1}).
\end{gather*}
A criterion is formulated for oscillation of all solutions to the quasilinear even-order differential equation
\begin{gather*}
y^{(n)}+\sum_{i=0}^{n-1}a_{j}(x)\;y^{(i)}+p(x)\;|y|^{k} {\rm sign} y=0,\\
p\in C(\mathbb{R}),\,\,a_j\in C(\mathbb{R}),\,\,\,j=0,\dots,{n-1},\,\,\, k>1,\,\, n=2m,\,\, m\in\mathbb{N},
\end{gather*}
which generalizes the well-known Atkinson's and Kiguradze's criteria.
The existence of quasi-periodic solutions is proved both for regular ($k>1$) and singular
($0$) nonlinear equations
$$
y^{(n)}+p_0\,|y|^{k} {\rm sign} y=0, \quad n>2,\quad k\in \mathbb {R},\quad k>0,\,\,\,k\neq1,
\quad p_0\in \mathbb {R},
$$
with $(-1)^{n}p_0>0.$
A result on the existence of periodic oscillatory solutions is formulated for this equation with $n=4,\,\,k>0,\,\,k\neq1,\,\,p_00.$
Keywords:
quasilinear differential equation, power nonlinearity, oscillatory solution, oscillatory criterion, periodic solutions, quasi-periodic solutions.
@article{VSGU_2015_6_a1,
author = {I. V. Astashova},
title = {On oscillation of solutions to quasi-linear {Emden--Fowler} type higher-order differential equations},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {12--22},
publisher = {mathdoc},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/}
}
TY - JOUR AU - I. V. Astashova TI - On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 12 EP - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/ LA - ru ID - VSGU_2015_6_a1 ER -
%0 Journal Article %A I. V. Astashova %T On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2015 %P 12-22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/ %G ru %F VSGU_2015_6_a1
I. V. Astashova. On oscillation of solutions to quasi-linear Emden--Fowler type higher-order differential equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 6 (2015), pp. 12-22. http://geodesic.mathdoc.fr/item/VSGU_2015_6_a1/