Incremental analysis of twoaxial loading of the plate with central circular hole: shakedown (accomodation), alternating plasticity, ratcheting
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 106-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the results of finite element calculations for the determination of stress-strain state of elasto-plastic plate with central circular hole which is under the action of cycle loading are presented. Incremental and direct methods of defining asymptotic behaviour of the structure: adaptability, alternating plasticility and progressive plastic flow are presented. In the package Simulia Abaqus incremental cyclic loading of samples with stress concentrators is performed.
Keywords: shakedown, reversed plasticity, ratcheting, finite element method, incremental analysis.
@article{VSGU_2015_3_a9,
     author = {V. A. Turkova},
     title = {Incremental analysis of twoaxial loading of the plate with central circular hole: shakedown (accomodation), alternating plasticity, ratcheting},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {106--124},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a9/}
}
TY  - JOUR
AU  - V. A. Turkova
TI  - Incremental analysis of twoaxial loading of the plate with central circular hole: shakedown (accomodation), alternating plasticity, ratcheting
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 106
EP  - 124
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a9/
LA  - ru
ID  - VSGU_2015_3_a9
ER  - 
%0 Journal Article
%A V. A. Turkova
%T Incremental analysis of twoaxial loading of the plate with central circular hole: shakedown (accomodation), alternating plasticity, ratcheting
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 106-124
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a9/
%G ru
%F VSGU_2015_3_a9
V. A. Turkova. Incremental analysis of twoaxial loading of the plate with central circular hole: shakedown (accomodation), alternating plasticity, ratcheting. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 106-124. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a9/

[1] Bradford R. A. W., Ure J., Chen H. F., “The Bree problem with different yeild stresses on-load and off-load and application to creep ratcheting”, International Journal of Pressure Vessels and Piping, 113 (2014), 32–39 | DOI

[2] Bree J., “Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements”, Journal of strain analysis, 2:3 (1967), 226–238 | DOI

[3] Fuschi P., Pisno A. A., Weichert D., Direct methods for limit and shakedown analysis of structures, Springer, Berlin, 2015, 313 pp.

[4] Spiliopoulos K., Weichert D., Direct methods for limit states in structures and materials, Springer, Berlin, 2014, 278 pp.

[5] Chen H., Ponter A. R. S., “A method for the evaluation of a ratchet limit and the amplitude of plastic starin for bodies subjected to cyclic loading”, Eur. J. Mech. A/Solids, 20 (2001), 555–571 | DOI | MR | Zbl

[6] Konig J. A., Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam, 1987

[7] Peigney M., Approche par controle optimal des structures anelastiques sous chargement cyclique, These de docteur de l'ecole polytechnique, 2003

[8] Wesfreid E., “Etude de comportement asymptotique pour un modele viscoplastique”, C.R. Acad. Sci. Serie A, 290:6 (1980), 297–300 | MR | Zbl

[9] Stolz C., “Optimal control approach in nonlinear mechanics”, C.R. Mechanique, 336 (2008), 238–244 | DOI | Zbl

[10] Peigney M., Stolz C., “An optimal control approach to the analysis of inelastic structure under cyclic loading”, J. of Mechanics and Physics of Solids, 51 (2003), 575–605 | DOI | MR | Zbl

[11] Stepanova L. V., “Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium”, Comptes Rendus Mechanique, 336:1–2 (2008), 232–237 | DOI | Zbl

[12] Stepanova L. V., Mathematical Methods of Fracture Mechanics, Samarskii universitet, Samara, 2006, 231 pp. (in Russian)

[13] Adylina E. M., Igonin S. A., Stepanova L. V., “About the nonlinear eigenvalue problem arising from the stress analysis near the fatigue crack growth problem”, Vestnik of Samara State University, 2012, no. 3/1(94), 83–102 (in Russian)

[14] Stepanova L. V., “Refined study of stress-strain state near the crack tip under cyclic loading in a damage medium”, Vestnik of Samara State University, 2011, no. 2(83), 105–115 (in Russian)

[15] Adylina E. M., Stepanova L. V., “On development of multiscale fracture models”, Vestnik of Samara State University, 2012, no. 9(100), 70–83 (in Russian)

[16] Drucker D. C., “A definition of stable inelastic material”, ASME J. Appl. Mechanics, 26 (1959), 101–106 | MR | Zbl

[17] Lee Y. L., Barkey M. E., Kang H. T., Metal Fatigue Analysis Handbook Practical Problem-Solving Techniques for Computer-Aided Engineering, Elsevier, 2012, 633 pp.

[18] Polizzoto C., “Variational methods for the steady state response of elastic-plastic solids subjected to cyclic loads”, Int. J. Solids and Structures, 40 (2003), 2673–2697 | DOI | MR

[19] Spiliopoulos K. V., Panagiotou K. D., “A direct method to predict steady states of elastoplastic structures”, Comput. Methods Appl. Mech. Engrg., 223–224 (2012), 186–198 | DOI | MR | Zbl

[20] Nguyen A. D., Hachemi A., Weichert D., “Application of the interior point method to shakedown analysis of pavements”, Int. J. Numerical Method Engrg., 2008, no. 4, 414–439 | DOI | Zbl