Digital image processing in interference-optical methods of solid mechanics
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 73-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the detailed review and comparison of modern methods of digital object processing in present-day interference optical techniques (namely, photomechanics) are given. The methods of fringe thinnig, fringe clustering, fringe tracing are discussed. Applications of methods to digital photomechanics and fracture mechanics parameter determination are considered. The example of cracked semidisc for compression is analyzed.
Keywords: interference-optical methods of solid mechanics, digital photoelasticity, digital image processing, isochromatics, isoclinics.
Mots-clés : fringe contour
@article{VSGU_2015_3_a6,
     author = {T. E. Gerasimova},
     title = {Digital image processing in interference-optical methods of solid mechanics},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {73--87},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a6/}
}
TY  - JOUR
AU  - T. E. Gerasimova
TI  - Digital image processing in interference-optical methods of solid mechanics
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 73
EP  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a6/
LA  - ru
ID  - VSGU_2015_3_a6
ER  - 
%0 Journal Article
%A T. E. Gerasimova
%T Digital image processing in interference-optical methods of solid mechanics
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 73-87
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a6/
%G ru
%F VSGU_2015_3_a6
T. E. Gerasimova. Digital image processing in interference-optical methods of solid mechanics. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 73-87. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a6/

[1] Razumovsky I. A., Interference-Optical Methods of Solid Mechanics, Springer, New York, 2011, 180 pp.

[2] Blobel S., Thielsch K., Ulbricht V., “Investigation on the micromechanical behavior of fiber reinforced epoxy with a semi-automatic phase shifting method”, Procedia Materials Science, 2 (2013), 220–226 | DOI

[3] Ramji M., Prasath R. G. R., “Sensitivity of isoclinic data using various phase shifting techniques in digital photoelasticity towards generalized error sources”, Optics and Lasers in Engineering, 49:9–10 (2011), 1153–1167 | DOI

[4] Y.-T. Zhang et al., “Branch cutting algorithm for unwrapping photoelastic phase map with isotropic point”, Optics and Lasers in Engineering, 50:5 (2012), 619–631 | DOI

[5] Stepanova L. V., Fedina M. E., “Selfsimilar solution of the antiplane crack problem in coupled problem (creep-damage)”, Applied Mechanics and Technical Physics, 43:5(255) (2002), 114–123 (in Russian) | MR

[6] Ayatollahi M. R., Dehghany M., Mirsayar M. M., “A comprehensive photoelastic study for mode I sharp V-notches”, European Journal of Mechanics-A/Solids, 37 (2013), 216–230 | DOI

[7] M. Guaglianoa et al., “Multiparameter Analysis Of The Stress Field Around A Crack Tip”, Procedia Engineering, 10 (2011), 2931–2936 | DOI

[8] Ayatollahi M. R., Sedighiani K., “A T-stress controlled specimen for mixed mode fracture experiments on brittle materials”, European Journal of Mechanics-A/Solids, 36 (2012), 83–93 | DOI

[9] M. N. James et al., “Local crack plasticity and its influence on the global elastic stress field”, International Journal of Fatigue, 46 (2013), 4–15 | DOI

[10] Surenda K. V. N., Simha K. R. Y., “Design and analysis of novel compression fracture specimen with constant form factor: Edge cracked semicircular disk (ECSD)”, Engineering Fracture Mechanics, 102 (2013), 235–248 | DOI

[11] Ezrin M., “Failure Analysis and Test Procedures”, In Plastic Failure Guide, Second Edition, 2013, 321–394 | DOI

[12] Gerasimova T. E., Lomakov P. N., Stepanova L. V., “Digital photomechanics: digital processing of the results of interference-optical methods and its application to fracture mechanics problems”, Vestnik of Samara State University, 2013, no. 9/2(110), 64–74 (in Russian)

[13] Stepanova L. V., Mathematical Methods of Fracture Mechanics, Samarskii universitet, Samara, 2006, 232 pp. (in Russian)

[14] Adylina E. M., Igonin S. A., Stepanova L. V., “About the nonlinear eigenvalue problem arising from the stress analysis near the fatigue crack growth problem”, Vestnik of Samara State University, 2012, no. 3/1(94), 83–102 (in Russian)

[15] Stepanova L. V., “Refined study of stress-strain state near the crack tip under cyclic loading in a damage medium”, Vestnik of Samara State University, 2011, no. 2(83), 105–115 (in Russian)

[16] S. Khaleghian et al., “Analysis of effective parameters for stress intensity factors in the contact problem between an asymmetric wedge and a half-plane using an experimental method of photoelasticity”, Materials and Design, 43 (2013), 447–453 | DOI

[17] Adylina E. M., Stepanova L. V., “On development of multiscale fracture models”, Vestnik of Samara State University, 2012, no. 9(100), 70–83 (in Russian)

[18] Toh S. L., Tang S. H., Hovanesian J. D., “Computarised photoelastic fringe multiplication”, Exp. Tech., 14:4 (1990), 21–23 | DOI

[19] Chen T. Y., Taylor C. E., “Computerised fringe analysis in photomechanics”, Exp. Mech., 29:3 (1989), 323–329 | DOI

[20] Ramesh K., Digital photoelasticity. Advanced Techniques and Applications, Springer, Berlin, 2000, 424 pp.