Global theorem of existence and uniqueness of the first boundary value problem for nonlinear integrodifferential equations of parabolic type
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 64-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Global theorem of existence and uniqueness of solution of the first boundary value problem for nonlinear integrodifferential equation of parabolic type is proved. If the right-hand side of the equation is integrally bounded, then we have estimate of the norm of the difference of two solutions, which implies continuous dependence of solution on the initial function and uniqueness of solution of the first boundary value problem. The problem under consideration generalizes the real model for measuring the level of incompressible fluid in the fuel tanks missiles. Therefore, such problem have a current application.
Keywords: integrodifferential equation, first boundary value problem, generalized solution, uniqueness, continuous dependence.
Mots-clés : parabolic type, existence
@article{VSGU_2015_3_a5,
     author = {O. P. Filatov},
     title = {Global theorem of existence and uniqueness of the first boundary value problem for nonlinear integrodifferential equations of parabolic type},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {64--72},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a5/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - Global theorem of existence and uniqueness of the first boundary value problem for nonlinear integrodifferential equations of parabolic type
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 64
EP  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a5/
LA  - ru
ID  - VSGU_2015_3_a5
ER  - 
%0 Journal Article
%A O. P. Filatov
%T Global theorem of existence and uniqueness of the first boundary value problem for nonlinear integrodifferential equations of parabolic type
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 64-72
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a5/
%G ru
%F VSGU_2015_3_a5
O. P. Filatov. Global theorem of existence and uniqueness of the first boundary value problem for nonlinear integrodifferential equations of parabolic type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 64-72. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a5/

[1] Wallander S. V., Lectures on aerohydromechanics, Izd-vo S.-Peterb. un-ta, 2005, 304 pp. (in Russian)

[2] Loitsiansky L. G., Fluid mechanics, Nauka, M., 1973, 848 pp. (in Russian) | MR

[3] Ladyzhenskaya O. A., Boundary-value problems of mathematical physics, Nauka, M., 1973, 408 pp. (in Russian) | MR

[4] Mikhailov V. P., Partial differential equations, Nauka, M., 1976, 392 pp. (in Russian) | MR

[5] Volterra V., Functional theory, integral and integro-differential equations, Nauka, M., 1982, 304 pp. (in Russian) | MR

[6] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York–London, 1992, 777 pp. | MR | Zbl

[7] Nefedov N. N., Nikitin A. G., Urazgil'dina T. A., “The Cauchy problem for integro-differential equation of Volterra”, Journal of Computational Mathematics and Mathematical Physics, 46:5 (2006), 805–812 (in Russian) | MR

[8] Nefedov N. N., Nikitin A. G., “Initial-boundary value problem for a nonlocal singularly perturbed reaction-diffusion equation”, Journal of Computational Mathematics and Mathematical Physics, 52:6 (2012), 1042–1047 (in Russian) | Zbl

[9] Bogolyubov A. N., Malykh M. D., “On a class of nonlocal nonlinear parabolic equations”, Journal of Computational Mathematics and Mathematical Physics, 51:6 (2011), 1056–1063 (in Russian) | MR | Zbl

[10] Ladyzhenskaya O. A., Ural'tseva N. N., “Boundary value problem for linear and quasi-linear parabolic equations, I”, Proceedings of the Academy of Sciences of the USSR. Series Mathematics, 26:1 (1962), 5–52 (in Russian) | Zbl