On one problem with dynamic nonlocal condition for a hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 44-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, boundary value problem for hyperbolic partial differential equation with nonlocal data in an integral of the second kind form is considered. The emergence of dynamic conditions may be due to the presence of a damping device. Existence and uniqueness of generalized solution is proved in a given cylindrical field. There is some limitation on the input data. The uniqueness of generalized solution is proved by apriori estimates. The existence is proved by Galerkin’s method and embedding theorems.
Keywords: hyperbolic equation, nonlocal condition of the second kind, integral conditions, generalized solution, Galerkin method, damping device, dynamic boundary conditions.
Mots-clés : dynamic nonlocal conditions
@article{VSGU_2015_3_a3,
     author = {A. E. Savenkova},
     title = {On one problem with dynamic nonlocal condition for a hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {44--52},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a3/}
}
TY  - JOUR
AU  - A. E. Savenkova
TI  - On one problem with dynamic nonlocal condition for a hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 44
EP  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a3/
LA  - ru
ID  - VSGU_2015_3_a3
ER  - 
%0 Journal Article
%A A. E. Savenkova
%T On one problem with dynamic nonlocal condition for a hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 44-52
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a3/
%G ru
%F VSGU_2015_3_a3
A. E. Savenkova. On one problem with dynamic nonlocal condition for a hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 44-52. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a3/

[1] Cannon J. R., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR

[2] Kamynin L. I., “On a boundary value problem in the theory of heat conduction with nonclassical boundary conditions”, Journal of Computational Mathematics and Mathematical Physics, 4:6 (1964), 1006–1024 (in Russian) | MR

[3] Gordeziani D. G., Avalishvili G. A., “Solutions of nonlocal problems for one-dimensional oscillations of the medium”, Mathematical Modelling, 12:1 (2000), 94–103 (in Russian) | MR | Zbl

[4] Kozhanov A. I., Pul'kina L. S., “On a solvability of boundary value problems with nonlocal boundary conditions of an integral type for multidimensional hyperbolic equations”, Differential Equations, 42:9 (2006), 1166–1179 (in Russian) | MR | Zbl

[5] Pul'kina L. S., “Nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, News of Higher Educational Institutions. Mathematics, 2012, no. 10, 32–44 (in Russian)

[6] Pul'kina L. S., Problems with non-classical conditions for hyperbolic equations, Izd-vo “Samarskii universitet”, Samara, 2012, 193 pp. (in Russian)

[7] Dmitriev V. B., “Nonlocal problem with integral condition for the equation of hyperbolic type”, Vestnik of Samara State Technical University. Series Physico-mathematical sciences, 2006, no. 42, 35–40 (in Russian) | DOI | MR

[8] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, Nauka, M., 1972, 736 pp. (in Russian)

[9] Ladyzhenskaya O. A., Boundary-value problems of mathematical physics, Nauka, M., 1973 (in Russian)