On the nonlinear eigenvalue problems arising in fracture mechanics
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 125-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the stress-strain state near a Mode II crack tip under plane stress conditions in power-law materials is considered. It is noted that nowadays the whole eigenspectrum and orders of stress singularity at the crack tip for a power-law medium are of prevailing interest. Additional eigenvalues for the stress field at a static mode II crack under plane stress condition are numerically obtained for different values of the exponent $n$ via the Runge–Kutta method in conjunction with the shooting method. However, in this case the shooting method is multi-parameter since it is necessary to select two parameters and, consequently, the results obtained require further verification and justification. For this purpose the technique developed in perturbation theory for study of nonlinear eigenvalue problems is offered and applied for eigenvalue problems arising from fracture mechanics analysis.
Keywords: Mode II crack under plane stress conditions, power-law material, nonlinear eigenvalue problem, eigenspectrum and orders of stress singularity
Mots-clés : perturbation technique.
@article{VSGU_2015_3_a10,
     author = {E. M. Yakovleva},
     title = {On the nonlinear eigenvalue problems arising in fracture mechanics},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {125--139},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a10/}
}
TY  - JOUR
AU  - E. M. Yakovleva
TI  - On the nonlinear eigenvalue problems arising in fracture mechanics
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 125
EP  - 139
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a10/
LA  - ru
ID  - VSGU_2015_3_a10
ER  - 
%0 Journal Article
%A E. M. Yakovleva
%T On the nonlinear eigenvalue problems arising in fracture mechanics
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 125-139
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a10/
%G ru
%F VSGU_2015_3_a10
E. M. Yakovleva. On the nonlinear eigenvalue problems arising in fracture mechanics. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 125-139. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a10/

[1] Wei R. P., Fracture Mechanics. Integration of Mechanics, Materials Science and Chemistry, Cambridge University Press, Cambridge, 2014, 232 pp.

[2] Kuna M., Finite Elements in Fracture Mechanics. Theory-Numerics-Applications, Springer, Dordrecht, 2013, 336 pp. | MR | Zbl

[3] A. Ehrlacher, H. Markenscoff (eds.), Duality, Symmetry and symmetry lost in solid mechanics. Selected works of H. D. Bui, Presses des Ponts, Paris, 2011, 396 pp.

[4] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extention”, J. Appl. Mech., 19 (1952), 287–298 | MR

[5] Stepanova L. V., Mathematical Methods of Fracture Mechanics, Samarskii universitet, Samara, 2006, 231 pp. (in Russian)

[6] Stepanova L. V., “Eigenvalue analysis for a crack in a power material”, Journal of Computational Mathematics and Mathematical Physics, 49:8 (2009), 1399–1415 (in Russian) | MR | Zbl

[7] Beliakova T. A., Kulagin V. A., “The eigenspectrum approach and T-stress at the mixed-mode crack tip for a stress-state dependent material”, Procedia Materials Science, 3 (2014), 147–152 | DOI

[8] Natarajan S., Song C., Belouettar S., “Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment”, Computer methods in applied mechanics and engineering, 279 (2014), 86–112 | DOI | MR

[9] Stepanova L. V., “Refined study of stress-strain state near the crack tip under cyclic loading in a damage medium”, Vestnik of Samara State University, 2011, no. 2(83), 105–115 (in Russian)

[10] Rice J. R., “Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear”, Trans. ASME. Ser. E. J. Appl. Mech., 34 (1967), 287–298 | DOI

[11] Amazigo J. C., “Some mathematical problems of elastic-plastic crack growth”, Fracture Mechanics, SIAM-AMS Procedings, 12, 1979, 125–137

[12] Amazigo J. C., “Fully plastic center-cracked strip under antiplane shear”, Int. J. Fracture, 11 (1975), 1291–1299 | Zbl

[13] Yuan F. G., Yang S., “Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear”, International Journal of Fracture, 69 (1995), 1–26 | DOI

[14] Aravas N., Blazo D. A., “Higher order terms in asymptotic elastoplastic mode-III crack tip solutions”, Acta Mechanica, 90 (1991), 139–153 | DOI | Zbl

[15] Yang S., “Analytical forms of higher-order asymptotic elastic-plastic crack-tip fields in a linear hardening material under antiplane shear”, International Journal of Fracture, 80 (1996), 59–71 | DOI

[16] Loghin A., Zhang N., Joseph P., “A nonlinear finite element eigenanalysis of antiplane shear including higher order terms”, Engineering Fracture Mechanics, 66:5 (2000), 441–454 | DOI

[17] Yang S., Yuan F. G., Cai X., “Higher order asymptotic elastic – plastic crack-tip fields under antiplane shear”, Engineering Fracture Mechanics, 54 (1996), 405–422 | DOI

[18] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Archive of Applied Mechanics, 64 (1994), 509–518 | DOI | Zbl

[19] Adylina E. M., Stepanova L. V., “On development of multiscale fracture models”, Vestnik of Samara State University, 2012, no. 9(100), 70–83 (in Russian)

[20] Adylina E. M., Igonin S. A., Stepanova L. V., “About the nonlinear eigenvalue problem arising from the stress analysis near the fatigue crack growth problem”, Vestnik of Samara State University, 2012, no. 3/1(94), 83–102 (in Russian)