On almost nilpotent varieties in the class of commutative metabelian algebras
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 21-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A well founded way of researching the linear algebra is the study of it using the identities, consequences of which is the identity of nilpotent. We know the Nagata-Higman's theorem that says that associative algebra with nil condition of limited index over a field of zero characteristic is nilpotent. It is well known the result of E. I. Zel'manov about nilpotent algebra with Engel identity. A set of linear algebras where a fixed set of identities takes place, following A. I. Maltsev, is called a variety. The variety is called almost nilpotent if it is not nilpotent, but each its own subvariety is nilpotent. Here in the case of the main field with zero characteristic, we proved that for any positive integer m there exist commutative metabelian almost nilpotent variety of exponent is equal to $m$.
Keywords: linear algebra, variety of algebras, almost nilpotent variety.
@article{VSGU_2015_3_a1,
     author = {S. P. Mischenko and O. V. Shulezhko},
     title = {On almost nilpotent varieties in the class of commutative metabelian algebras},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {21--28},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a1/}
}
TY  - JOUR
AU  - S. P. Mischenko
AU  - O. V. Shulezhko
TI  - On almost nilpotent varieties in the class of commutative metabelian algebras
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 21
EP  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a1/
LA  - ru
ID  - VSGU_2015_3_a1
ER  - 
%0 Journal Article
%A S. P. Mischenko
%A O. V. Shulezhko
%T On almost nilpotent varieties in the class of commutative metabelian algebras
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 21-28
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a1/
%G ru
%F VSGU_2015_3_a1
S. P. Mischenko; O. V. Shulezhko. On almost nilpotent varieties in the class of commutative metabelian algebras. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 21-28. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a1/

[1] Mishchenko S. P., Shulezhko O. V., “An almost nilpotent variety of any integer exponent”, Vestnik of Moscow University. Series 1. Mathematics. Mechanics, 2015, no. 2, 53–57 (in Russian) | MR

[2] Mishchenko S. S., “On growth of varieties of commutative linear algebras”, Fundamental and Applied Mathematics, 14:5 (2008), 165–170 (in Russian)

[3] Chang N. T. K., Frolova Yu. Yu., “Almost commutative metabelian nilpotent varieties growth not higher than exponential”, International Conference Mal'tsev Readings, Scientific conference abstracts (Novosibirsk, 10–13 November, 2014), 119 (in Russian)

[4] Shirshov A. I. et al., Rings that are nearly associative, Nauka, M., 1978, 432 pp. (in Russian)

[5] Shulezhko O. V., “About almost nilpotent varieties in different classes of linear algebra”, Chebyshev collection, 16:1(53) (2015), 67–88 (in Russian)

[6] Giambruno A., Zaicev M. V., Polynomail identities and Asymptotic Methods, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence, RI, 2005, 352 | MR | Zbl

[7] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Israel Journal of Mathematics, 199:1 (2014), 241–257 | DOI | MR | Zbl

[8] Mishchenko S. P., Shulezhko O. V., “Description almost nilpotent anticommutative metabelian varieties with subexponential growth”, International Conference Mal'tsev Readings, Scientific conference abstracts (Novosibirsk, 10–13 November, 2014), 110 (in Russian)