Problem on vibration of a bar with nonlinear second-order boundary damping
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 9-20
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the initial-boundary problem with nonlinear dynamical boundary condition for the pseudohyperbolic equation. This problem represents a mathematical model of longitudinal vibration in a thick short bar with dynamic nonlinear second-order boundary damping. The existence and uniqueness of a generalized solution are proved. The proof is based on a priori estimates and Galerkin procedure. This approach allows to construct approximation in the suitable for practical application form.
Keywords:
dynamic boundary conditions, nonlinear damping, pseudohyperbolic equation, generalized solution, Rayleigh’s model.
@article{VSGU_2015_3_a0,
author = {A. B. Beylin and L. S. Pulkina},
title = {Problem on vibration of a bar with nonlinear second-order boundary damping},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {9--20},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/}
}
TY - JOUR AU - A. B. Beylin AU - L. S. Pulkina TI - Problem on vibration of a bar with nonlinear second-order boundary damping JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 9 EP - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/ LA - ru ID - VSGU_2015_3_a0 ER -
A. B. Beylin; L. S. Pulkina. Problem on vibration of a bar with nonlinear second-order boundary damping. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 9-20. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/