Problem on vibration of a bar with nonlinear second-order boundary damping
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 9-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the initial-boundary problem with nonlinear dynamical boundary condition for the pseudohyperbolic equation. This problem represents a mathematical model of longitudinal vibration in a thick short bar with dynamic nonlinear second-order boundary damping. The existence and uniqueness of a generalized solution are proved. The proof is based on a priori estimates and Galerkin procedure. This approach allows to construct approximation in the suitable for practical application form.
Keywords: dynamic boundary conditions, nonlinear damping, pseudohyperbolic equation, generalized solution, Rayleigh’s model.
@article{VSGU_2015_3_a0,
     author = {A. B. Beylin and L. S. Pulkina},
     title = {Problem on vibration of a bar with nonlinear second-order boundary damping},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {9--20},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/}
}
TY  - JOUR
AU  - A. B. Beylin
AU  - L. S. Pulkina
TI  - Problem on vibration of a bar with nonlinear second-order boundary damping
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 9
EP  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/
LA  - ru
ID  - VSGU_2015_3_a0
ER  - 
%0 Journal Article
%A A. B. Beylin
%A L. S. Pulkina
%T Problem on vibration of a bar with nonlinear second-order boundary damping
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 9-20
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/
%G ru
%F VSGU_2015_3_a0
A. B. Beylin; L. S. Pulkina. Problem on vibration of a bar with nonlinear second-order boundary damping. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2015), pp. 9-20. http://geodesic.mathdoc.fr/item/VSGU_2015_3_a0/

[1] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 2004 (in Russian)

[2] Rayleigh J. W. S., Theory of sound, v. 1, GITTL, M., 1955 (in Russian)

[3] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibrations of rigid rod based on Rayleigh model”, DAN, 417 (2007), 56–61 (in Russian) | MR | Zbl

[4] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibration in a short thick bar with dynamical boundary conditions”, Vestnik of Samara State University, 2014, no. 3(114), 9–19 (in Russian)

[5] Rao J. S., Advanced Theory of Vibration, Wiley, N.Y., 1992

[6] Doronin G. G., Lar'kin N. A., Souza A. J., “A Hyperbolic Problem with Nonlinear Second-order Boundary damping”, EJDE, 1998, no. 28

[7] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973 (in Russian) | MR

[8] Sobolev S. L., Selected questions of the theory of functional spaces and generalized functions, v. I, Nauka, 1989, 254 pp. (in Russian) | MR

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltzeva N. N., Linear and quasilinear parabolic equations, Nauka, M., 1967 (in Russian) | MR

[10] Lions J. L., Some methods of solving nonlinear boundary problems, Mir, M., 1972, 587 pp. (in Russian) | MR