Subharmonic synchronization of self-oscillations in discrete time
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 134-142
Self-oscillations in the system oscillating in discrete time and being under the influence of an external harmonious signal are investigated. As an object of researches the option of discrete map of the oscillator of Van der Pol offered earlier by authors is brought to attention. The modes of synchronous self-oscillations are analysed by means of methods of numerical experiment and harmonic balance. It is established that the effect of subharmonic synchronization in discrete time can be realized at any relation of frequencies of synchronized self-oscillations and the synchronizing signal.
Keywords:
self-oscillatory system, discrete time, substitution of frequencies, synchronization, capture of frequency.
@article{VSGU_2015_10_a9,
author = {V. V. Zaitsev and I. V. Stulov and A. N. Shilin},
title = {Subharmonic synchronization of self-oscillations in discrete time},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {134--142},
year = {2015},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a9/}
}
TY - JOUR AU - V. V. Zaitsev AU - I. V. Stulov AU - A. N. Shilin TI - Subharmonic synchronization of self-oscillations in discrete time JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2015 SP - 134 EP - 142 IS - 10 UR - http://geodesic.mathdoc.fr/item/VSGU_2015_10_a9/ LA - ru ID - VSGU_2015_10_a9 ER -
V. V. Zaitsev; I. V. Stulov; A. N. Shilin. Subharmonic synchronization of self-oscillations in discrete time. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 134-142. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a9/
[1] Hayash C., Nonlinear oscillations in physical systems, Mir, M., 1968, 423 pp. (in Russian)
[2] Oppenheim A., Schafer R., Digital signal processing, Tekhnosfera, M., 2006, 856 pp. (in Russian)
[3] Zaitsev V. V., Lindt S. V., Shilin A. N., “Van der Pol and Rayleigh oscillators in discrete time”, Vestnik of Samara State University, 2014, no. 7(118), 104–114 (in Russian)
[4] Zaitsev V. V., “About discrete mapping of the Van der Pol oscillator”, Physics of Wave Processes and Radio Systems, 17:1 (2014), 35–40 (in Russian)