Cases of integrability corresponding to the pendulum motion on the plane
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 91-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we systemize the results on the study of plane-parallel motion equations of fixed rigid body-pendulum which is placed in certain nonconservative force field. In parallel, we consider the problem of a plane-parallel motion of a free rigid body which is also placed in a similar force field. Thus, the non-conservative tracking force operates onto this body. That force forces the value of certain point of a body to be constant for all the time of a motion, which means the existence of nonintegrable servoconstraint in the system. The obtained results are systematized and served in the invariant form. We also show the nontrivial topological and mechanical analogies.
Keywords: rigid body, resisting medium, dynamical system, phase pattern, case of integrability.
@article{VSGU_2015_10_a7,
     author = {M. V. Shamolin},
     title = {Cases of integrability corresponding to the pendulum motion on the plane},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {91--113},
     publisher = {mathdoc},
     number = {10},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a7/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Cases of integrability corresponding to the pendulum motion on the plane
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 91
EP  - 113
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_10_a7/
LA  - ru
ID  - VSGU_2015_10_a7
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Cases of integrability corresponding to the pendulum motion on the plane
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 91-113
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2015_10_a7/
%G ru
%F VSGU_2015_10_a7
M. V. Shamolin. Cases of integrability corresponding to the pendulum motion on the plane. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 91-113. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a7/