Linearization of Pfaff differential equations for the conditional quantile of multivariate probability distributions
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 29-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the task of bringing the point transformations of nonlinear partial differential equations of Pfaff for conditional quantile multivariate probability distributions to the Pfaff differential equations with constant coefficients. Solutions of the equations of Pfaff with constant coefficients are linear functions representing the conditional quantile of multivariate Gaussian distributions.
Mots-clés : Pfaff's equations, quantile, point transformation
Keywords: differential equations, Gaussian distribution, statistics, mathematical model regressions, probability.
@article{VSGU_2015_10_a2,
     author = {I. S. Orlova},
     title = {Linearization of {Pfaff} differential equations for the conditional quantile of multivariate probability distributions},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {29--39},
     year = {2015},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a2/}
}
TY  - JOUR
AU  - I. S. Orlova
TI  - Linearization of Pfaff differential equations for the conditional quantile of multivariate probability distributions
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 29
EP  - 39
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_10_a2/
LA  - ru
ID  - VSGU_2015_10_a2
ER  - 
%0 Journal Article
%A I. S. Orlova
%T Linearization of Pfaff differential equations for the conditional quantile of multivariate probability distributions
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 29-39
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2015_10_a2/
%G ru
%F VSGU_2015_10_a2
I. S. Orlova. Linearization of Pfaff differential equations for the conditional quantile of multivariate probability distributions. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 29-39. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a2/

[1] Shatskih S. Ya., Orlova I. S., Melkumova L. E., “Quantile regression multivariate models based on differential Pfaff equations”, Izvestiia RAEN. Ser.: MMMIU, 2011, no. 3–4, 14–109 (in Russian)

[2] Poiraud-Casanova S., Thomas-Agan Ch., “Quantiles conditionnels”, Journal de la Société Française de Statistiques, 139:4 (1998), 31–41

[3] Kramer G., Mathematical methods of statistics, 2-nd edition, Mir, M., 1975, 648 pp. (in Russian) | MR

[4] Zhitomirskij M. Ya., “Criterion linearization of differential forms”, Izv. vuzov. Ser.: Matematika, 1983, no. 3, 40–46 (in Russian) | MR

[5] Zhitomirskij M. Ya., “Degeneration of differential 1-forms and Pfaffian structures”, Uspekhi matematicheskih nauk, 46:5(281) (1991), 47–78 (in Russian) | MR

[6] Horn R., Johnson C., Matrix analysis, Mir, M., 1989, 655 pp. (in Russian) | MR

[7] Goryachkin O. V., Shatskih S. Ya., “The method of analysis of independent components based on the conversion of Independence”, Doklady Akademii nauk Rossiiskoi Federatsii, 2004, no. 4, 398 (in Russian)

[8] Derr V. Ya., “Non-oscillation of solutions of linear differential equations”, Vestnik Udmurtskogo universiteta, 2009, no. 1, 56–99 (in Russian)

[9] Efimov N. V., Introduction to the theory of external forms, Nauka, M., 1977 (in Russian)

[10] Zaks Sh., Theory of statistical inferences, Mir, M., 1975 (in Russian)