Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 24-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article concerns a numerical investigation of nonlinear diffusion model in the circle. Nonlinear diffusion equation simulates the change of potential concentration of viscoelastic fluid, which is filtered in a porous media. This equation is a semilinear Sobolev type equation. Sobolev type equations constitute a vast area of non-classical equations of mathematical physics. Theorem of existence and uniqueness of a weak generalized solution to the Showalter–Sidorov problem for nonlinear diffusion equation is stated. The algorithm of numerical solution to the problem in a circle was developed using the modified Galerkin method. There is a result of computational experiment in this article.
Keywords: nonlinear diffusion equation, numerical modelling, Galerkin's method, Showalter–Sidorov problem, weak generalized solution, monotone operators, monotone method.
Mots-clés : Sobolev type equations
@article{VSGU_2015_10_a1,
     author = {N. A. Manakova and A. A. Selivanova},
     title = {Numerical investigation of the {Showalter{\textendash}Sidorov} problem for nonlinear diffusion equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {24--28},
     year = {2015},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a1/}
}
TY  - JOUR
AU  - N. A. Manakova
AU  - A. A. Selivanova
TI  - Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 24
EP  - 28
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_10_a1/
LA  - ru
ID  - VSGU_2015_10_a1
ER  - 
%0 Journal Article
%A N. A. Manakova
%A A. A. Selivanova
%T Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 24-28
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2015_10_a1/
%G ru
%F VSGU_2015_10_a1
N. A. Manakova; A. A. Selivanova. Numerical investigation of the Showalter–Sidorov problem for nonlinear diffusion equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a1/

[1] Dzektser E. S., “Generalization of the equation of movement of ground waters”, Proceedings of the USSR Academy of Sciences, 1972, no. 5, 1031–1033 (in Russian)

[2] Polubarinova-Kochina P. Ya., Theory of movement of ground waters, Nauka, M., 1987, 664 pp. (in Russian)

[3] Amfilokhiev V. B., Voitkunskii Ya. I., Mazaeva N. P., “Flows of polymer solutions in the presence of convective accelerations”, Proceedings of Leningrad Shipbuilding Institute, 96 (1975), 3–9 (in Russian) | Zbl

[4] Sviridyuk G. A., “A problem of generalized Boussinesq filtration equation”, Russian Mathematics (Iz. VUZ), 1990, no. 2, 55–61 (in Russian)

[5] Manakova N. A., Optimal control problem for semilinear Sobolev type equations, Izdat. tsentr IuUrGU, Chelyabinsk, 2012, 88 pp. (in Russian) | MR

[6] Sviridyuk G. A., Sukacheva T. G., “On Galerkin approximations of singular nonlinear equations of Sobolev type”, Russian Mathematics (Iz. VUZ), 1989, no. 10, 56–59 | MR | MR | Zbl