Mots-clés : solvable group
@article{VSGU_2015_10_a0,
author = {K. A. Vyatkina},
title = {$U$-projection for the adjoint representation of the group~$\mathrm{GL}(n,K)$},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {9--23},
year = {2015},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/}
}
K. A. Vyatkina. $U$-projection for the adjoint representation of the group $\mathrm{GL}(n,K)$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 9-23. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/
[1] Miyata K., “Invariants of certain groups”, Nagoya Math. Journal, 41:1 (1971), 69–73 (in English) | MR | Zbl
[2] Vinberg E. B., Popov V. L., “Invariant theory”, Algebraic geometry – 4, Itogi Nauki i Tekhniki. Seriya “Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya”, 55, M., 1989, 137–309 (in Russian)
[3] Vinberg E. B., “Rationality of the field of invariants of a triangular group”, Moscow University Mechanics Bulletin and Moscow University Mathematics Bulletin, 1982, no. 2, 23–24 (in Russian) | MR
[4] Vyatkina K. A., Panov A. N., “Field of $U$-invariants of adjoint representation of the group $\mathrm{GL}(n,k)$”, Mathematical Notes, 2013, no. 1(93), 144–147 (in Russian) | DOI
[5] Vyatkina K. A., “Field of borel group invariant of adjoint reprepentation of the group $\mathrm{GL}(n,K)$”, Vestnik of Samara State University. Natural Science series, 2014, no. 3(114), 34–40 (in Russian)
[6] Panyushev D. I., “Complexity and rank of actions in invariant theory”, Journal of Mathematical Sciences, 95:1 (1999), 1925–1985 (in English) | DOI | MR | Zbl