$U$-projection for the adjoint representation of the group $\mathrm{GL}(n,K)$
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 9-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study rings and fields of invariants for the adjoint representation of the group $\mathrm{GL}(n,K)$ over the field of zero characteristic. The aim of this paper is to construct the special linear operator, we call it $U$-projector, that maps any polynomial on the matrix algebra to an $U$-invariant rational function. In this paper we present two different constructions of $U$-projector. Using the $U$-projector we obtain the system of generators of the field of $U$-invariants of the adjoint representation of the group $\mathrm{GL}(n,K)$. We obtain the system of generators of the field of $U$-invariants for the restriction of the adjoint representation to the subgroup of block-diagonal matrices.
Keywords: field of invariants, adjoint representation, unitriangular group, algebra of invariants, representations of groups, locally nilpotent derivation, system of generators.
Mots-clés : solvable group
@article{VSGU_2015_10_a0,
     author = {K. A. Vyatkina},
     title = {$U$-projection for the adjoint representation of the group~$\mathrm{GL}(n,K)$},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {9--23},
     year = {2015},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/}
}
TY  - JOUR
AU  - K. A. Vyatkina
TI  - $U$-projection for the adjoint representation of the group $\mathrm{GL}(n,K)$
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2015
SP  - 9
EP  - 23
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/
LA  - ru
ID  - VSGU_2015_10_a0
ER  - 
%0 Journal Article
%A K. A. Vyatkina
%T $U$-projection for the adjoint representation of the group $\mathrm{GL}(n,K)$
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2015
%P 9-23
%N 10
%U http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/
%G ru
%F VSGU_2015_10_a0
K. A. Vyatkina. $U$-projection for the adjoint representation of the group $\mathrm{GL}(n,K)$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 10 (2015), pp. 9-23. http://geodesic.mathdoc.fr/item/VSGU_2015_10_a0/

[1] Miyata K., “Invariants of certain groups”, Nagoya Math. Journal, 41:1 (1971), 69–73 (in English) | MR | Zbl

[2] Vinberg E. B., Popov V. L., “Invariant theory”, Algebraic geometry – 4, Itogi Nauki i Tekhniki. Seriya “Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya”, 55, M., 1989, 137–309 (in Russian)

[3] Vinberg E. B., “Rationality of the field of invariants of a triangular group”, Moscow University Mechanics Bulletin and Moscow University Mathematics Bulletin, 1982, no. 2, 23–24 (in Russian) | MR

[4] Vyatkina K. A., Panov A. N., “Field of $U$-invariants of adjoint representation of the group $\mathrm{GL}(n,k)$”, Mathematical Notes, 2013, no. 1(93), 144–147 (in Russian) | DOI

[5] Vyatkina K. A., “Field of borel group invariant of adjoint reprepentation of the group $\mathrm{GL}(n,K)$”, Vestnik of Samara State University. Natural Science series, 2014, no. 3(114), 34–40 (in Russian)

[6] Panyushev D. I., “Complexity and rank of actions in invariant theory”, Journal of Mathematical Sciences, 95:1 (1999), 1925–1985 (in English) | DOI | MR | Zbl