Van der Pol and Rayleigh oscillators in discrete time
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 104-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New discrete displays of classical self-oscillatory systems — Van der Paul and Rayleigh's oscillators are offered. Displays with the kept temporary characteristics of response of linear system on external influence are received on the basis of combination of methods of parametrical synthesis and invariancy of pulse characteristics of dynamic systems. Examples of generation of regular and chaotic self-oscillations in discrete time are given. For the analysis of self-oscillations in the received discrete systems the method of slowly changing amplitudes is used. The effect of substitution of frequencies in a range of self-oscillations with use of the improved first approach is considered.
Keywords: nonlinear dynamics, discrete time, self-oscillatory system, discrete mapping, high-Q oscillators, method of invariance of impulse responces, effect of substitution of frequencies, dynamic chaos.
@article{VSGU_2014_7_a9,
     author = {V. V. Zaitsev and S. V. Lindt and A. N. Shilin},
     title = {Van der {Pol} and {Rayleigh} oscillators in discrete time},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {104--114},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a9/}
}
TY  - JOUR
AU  - V. V. Zaitsev
AU  - S. V. Lindt
AU  - A. N. Shilin
TI  - Van der Pol and Rayleigh oscillators in discrete time
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 104
EP  - 114
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a9/
LA  - ru
ID  - VSGU_2014_7_a9
ER  - 
%0 Journal Article
%A V. V. Zaitsev
%A S. V. Lindt
%A A. N. Shilin
%T Van der Pol and Rayleigh oscillators in discrete time
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 104-114
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a9/
%G ru
%F VSGU_2014_7_a9
V. V. Zaitsev; S. V. Lindt; A. N. Shilin. Van der Pol and Rayleigh oscillators in discrete time. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 104-114. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a9/

[1] Malinetskiy G. G., Potapov A. B., Modern problems of nonlinear dynamics, Editorial URSS, M., 2000, 336 pp. (in Russian)

[2] Zaslavsky G. M., Hamiltonian chaos and fractal dynamics, NITs RKhD. Izhevskii institut komp'iuternykh issledovanii, M.–Izhevsk, 2010, 472 pp. (in Russian)

[3] Oppenheim A., Schafer R., Digital signal processing, Tekhnosfera, M., 2006, 856 pp. (in Russian)

[4] Zaitsev V. V., Davydenko S. V., Zaitsev O. V., “Dynamics of self-oscillations of discrete Van der Pol oscillator”, Physics of Wave Processes and Radio Systems, 3:2 (2000), 64–67 (in Russian)

[5] Bogolyubov N. N., Mitropol'sky Yu. A., Asymptotic methods in the theory of nonlinear oscillations, Nauka, M., 1974, 504 pp. (in Russian) | MR

[6] Zaitsev V. V., Discrete signals and systems, Izd-vo SamGU, Samara, 2010 (in Russian)

[7] Kapranov M. V., Kuleshov V. N., Utkin G. M., Theory of oscillations in the radiotechnics, Nauka, M., 1984, 320 pp. (in Russian)

[8] Nayfe A., Introduction to perturbation methods, Mir, M., 1984, 536 pp. (in Russian) | MR

[9] Max Zh., Methods and techniques of signal processing at physical measurements, in 2 v., transl. from French, v. 1, Mir, M., 1983, 312 pp. (in Russian)

[10] E. F. Mishchenko et al., The Many Faces of chaos, Fizmatlit, M., 2013, 432 pp. (in Russian)