Quasistatic stationary growth of elastoplastical crack
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 85-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problem with relations to the theory of flow with nonlinear hardening in derivatives stress and strain tensors in the parameter loading is formulated to estimate local mechanical properties in the vicinity of crack tip of mode of loading for plane strain of elastic-plastic material at the stage of quasi-static growth. Complete solutions are obtained by the method of asymptotic decompositions. The redistribution of stress and strain fields in the plastic region at quasi-static growing crack for the intermediate structure is investigated. The form of plastic zones was found in the evolution of fracture process of material. We also obtained direct estimates of errors and diameters of convergence when dropping residues of series.
Keywords: subcritical crack propagation, elastic-plastic material, stress-strain state, method of asymptotic decompositions, theory of flow, plane strain, plastic layer, discharge zone.
@article{VSGU_2014_7_a7,
     author = {V. A. Nifagin and M. A. Gundina},
     title = {Quasistatic stationary growth of elastoplastical crack},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {85--95},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a7/}
}
TY  - JOUR
AU  - V. A. Nifagin
AU  - M. A. Gundina
TI  - Quasistatic stationary growth of elastoplastical crack
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 85
EP  - 95
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a7/
LA  - ru
ID  - VSGU_2014_7_a7
ER  - 
%0 Journal Article
%A V. A. Nifagin
%A M. A. Gundina
%T Quasistatic stationary growth of elastoplastical crack
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 85-95
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a7/
%G ru
%F VSGU_2014_7_a7
V. A. Nifagin; M. A. Gundina. Quasistatic stationary growth of elastoplastical crack. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 85-95. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a7/

[1] George C., Sih Methods of analysis and solution of crack problems, Noordhoff International Publishing, Leyden, 1973, 517 pp. | MR

[2] Freund L. B., Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, 1998, 563 pp. | MR

[3] Yarema S., Zboromirski A., “Analytical researches of fatigue crack growth, randomly oriented in a biaxial non-uniform stress field”, Physical and chemical mechanics of materials, 20:6 (1984), 54–62 (in Russian)

[4] B. A. Kudryavtsev et al., “Local plastic zone close to the end of a slit (plane strain)”, Proceedings of Academy of Sciences of USSR, 1970, no. 5, 132–138 (in Russian) | Zbl

[5] Morozov N. F., Mathematical questions of crack theory, v. I, Nauka, 1984, 256 pp. (in Russian) | MR

[6] Johnson C., “On finite element methods for plasticity problems”, Numer. Math., 26 (1976), 79–84 | DOI | MR | Zbl

[7] Stepanova L. V., Mathematical Methods of Fracture Mechanics, Fizmatlit, M., 2009, 336 pp.

[8] Nifagin V. A., Bubich M. A., “Method of asymptotic expansion in the theory of elastoplastic cracks”, Proceedings of the Academy of Sciences. Belarus, 2011, no. 4, 60–66 (in Russian) | MR

[9] Slepyan L. I., Mechanics of Cracks, Sudostroenie, L., 1990, 296 pp. (in Russian)

[10] Resenfield A. R., Dai P. K., Hahn G. T., “Crack extension and propagation under plane stress”, Proc. Int. Conf. of Fract., 1965, no. 1, 179–226

[11] Zhao J., Zhang X., “On the process zone of quasi-static growing tensile crack with power-law elastic-plastic damage”, Int. J. of Fracture Mech., 108:4 (2001), 383–395 | DOI

[12] Kuzemko V. A., Rusinko K. N., “Flat plastic deformation in the small vicinity of the crack tip”, Proceedings of the Academy of Sciences of USSR. MTT, 1983, no. 2, 124–127 | MR | Zbl