@article{VSGU_2014_7_a5,
author = {S. M. Ratseev},
title = {On varieties of associative algebras with weak growth},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {70--74},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a5/}
}
S. M. Ratseev. On varieties of associative algebras with weak growth. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 70-74. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a5/
[1] Ratseev S. M., “Identities in the varieties generated by algebras of upper triangular matrices”, Siberian Mathematical Journal, 52:2 (2011), 416–429 (in Russian) | MR | Zbl
[2] Petrogradsky V. M., “Exponents of subvarieties of upper triangular matrices over arbitrary fields are integral”, Serdika Math., 26:2 (2000), 1001–1010 | MR
[3] Ratseev S. M., “Growth of varieties of Leibniz algebras with nilpotent commutator”, Mathematical Notes, 82:1 (2007), 108–117 (in Russian) | DOI | MR | Zbl
[4] Ratseev S. M., “Growth of some varieties of Leibniz algebras”, Vestnik of Samara State University. Natural Science Series, 2006, no. 6/1(46), 70–77 (in Russian)
[5] Ratseev S. M., “Estimate of growth of Leibniz algebras with nilpotent commutator”, Vestnik of Samara State University. Natural Science Series, 2010, no. 4(78), 65–72 (in Russian)
[6] Ratseev S. M., “Growth in Poisson algebras”, Algebra and Logic, 50:1 (2011), 68–88 (in Russian) | MR
[7] Ratseev S. M., “Growth of some varieties of Leibniz–Poisson algebras”, Serdica Math. J., 37:4 (37) (2011), 331–340 | MR | Zbl
[8] Ratseev S. M., Cherevatenko O. I., “Exponents of some varieties of Leibniz–Poisson algebras”, Vestnik of Samara State University. Natural Science Series, 2013, no. 3(104), 42–52 (in Russian)
[9] Ratseev S. M., “Commutative Leibniz–Poisson algebras of polynomial growth”, Vestnik Samarskogo gosudarstvennogo universiteta. Natural Science Series, 2012, no. 3/1(94), 54–65 (in Russian)
[10] Mishchenko S. P., “Varieties of Lie algebras with weak growth of sequence of codimensions”, Vestnik of Moscow Universiteta. Series 1. Mathematics, mechanics, 1982, no. 5, 63–66 (in Russian)