Integrable systems on tangent bundle of multi-dimensional sphere
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 60-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The systems which have finite-dimensional spheres as the space of positions, are arising in many problems of multi-dimensional dynamics. Accordingly, tangent bundles of those spheres become phase spaces of such systems. In the article activity of inductive transition in the system on tangent bundle of low-dimensional sphere under increase of its dimension and absence of force field is analyzed. At that, nonconservative fields of forces are presented with the presence of which the systems possess the complete choice of first integrals expressing in terms of finite combination of elementary functions and are, in general, the transcendental functions of its variables.
Keywords: dynamical system, integrability in terms of elementary functions, transcendental first integral.
@article{VSGU_2014_7_a4,
     author = {N. V. Pokhodnya and M. V. Shamolin},
     title = {Integrable systems on tangent bundle of multi-dimensional sphere},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {60--69},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/}
}
TY  - JOUR
AU  - N. V. Pokhodnya
AU  - M. V. Shamolin
TI  - Integrable systems on tangent bundle of multi-dimensional sphere
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 60
EP  - 69
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/
LA  - ru
ID  - VSGU_2014_7_a4
ER  - 
%0 Journal Article
%A N. V. Pokhodnya
%A M. V. Shamolin
%T Integrable systems on tangent bundle of multi-dimensional sphere
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 60-69
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/
%G ru
%F VSGU_2014_7_a4
N. V. Pokhodnya; M. V. Shamolin. Integrable systems on tangent bundle of multi-dimensional sphere. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 60-69. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/

[1] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975 | DOI | MR | Zbl

[2] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 110:2 (2002), 2526–2555 | DOI | MR

[3] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915 | DOI | MR | Zbl

[4] Shamolin M. V., “Jacobi integrability of problem of four-dimensional body motion in a resisting medium”, Reports of RAS, 375:3 (2000), 343–346 (in Russian)

[5] Pokhodnya N. V., Shamolin M. V., “New case of integrability in dynamics of multi-dimensional body”, Vestnik of Samara State University. Natural Sciences Series, 2012, no. 9(100), 136–150 (in Russian)

[6] Pokhodnya N. V., Shamolin M. V., “Certain conditions of integrability of dynamical systems in transcendental functions”, Vestnik of Samara State University. Natural Sciences Series, 2013, no. 9/1(110), 35–41 (in Russian)

[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspect in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian) | MR

[8] Trofimov V. V., “Symplectic structures on symmetruc spaces automorphysm groups”, Bulletin of Moscow University, 1984, no. 6, 31–33 (in Russian) | MR

[9] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Results of science and technology. Series: Contemporary Mathematics and its Applications. Subjects Reviews. Dynamical Systems, 125, 2013, 5–254 (in Russian) | MR

[10] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)