@article{VSGU_2014_7_a4,
author = {N. V. Pokhodnya and M. V. Shamolin},
title = {Integrable systems on tangent bundle of multi-dimensional sphere},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {60--69},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/}
}
TY - JOUR AU - N. V. Pokhodnya AU - M. V. Shamolin TI - Integrable systems on tangent bundle of multi-dimensional sphere JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2014 SP - 60 EP - 69 IS - 7 UR - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/ LA - ru ID - VSGU_2014_7_a4 ER -
N. V. Pokhodnya; M. V. Shamolin. Integrable systems on tangent bundle of multi-dimensional sphere. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 60-69. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a4/
[1] Shamolin M. V., “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 114:1 (2003), 919–975 | DOI | MR | Zbl
[2] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 110:2 (2002), 2526–2555 | DOI | MR
[3] Shamolin M. V., “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, Journal of Mathematical Sciences, 122:1 (2004), 2841–2915 | DOI | MR | Zbl
[4] Shamolin M. V., “Jacobi integrability of problem of four-dimensional body motion in a resisting medium”, Reports of RAS, 375:3 (2000), 343–346 (in Russian)
[5] Pokhodnya N. V., Shamolin M. V., “New case of integrability in dynamics of multi-dimensional body”, Vestnik of Samara State University. Natural Sciences Series, 2012, no. 9(100), 136–150 (in Russian)
[6] Pokhodnya N. V., Shamolin M. V., “Certain conditions of integrability of dynamical systems in transcendental functions”, Vestnik of Samara State University. Natural Sciences Series, 2013, no. 9/1(110), 35–41 (in Russian)
[7] Arnold V. I., Kozlov V. V., Neyshtadt A. I., Mathematical aspect in classical and celestial mechanics, VINITI, M., 1985, 304 pp. (in Russian) | MR
[8] Trofimov V. V., “Symplectic structures on symmetruc spaces automorphysm groups”, Bulletin of Moscow University, 1984, no. 6, 31–33 (in Russian) | MR
[9] Shamolin M. V., “Variety of cases of integrability in dynamics of lower-, and multi-dimensional body in nonconservative field”, Results of science and technology. Series: Contemporary Mathematics and its Applications. Subjects Reviews. Dynamical Systems, 125, 2013, 5–254 (in Russian) | MR
[10] Shamolin M. V., Methods of analysis of various dissipation dynamical systems in dynamics of a rigid body, Ekzamen, M., 2007, 352 pp. (in Russian)