Necessary non-local conditions for a diffusion-wave equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 45-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, diffusion-wave equation with fractional derivative in Riemann–Liouville sense is investigated. Integral operators with the Write function in the kernel associated with the investigational equation are introduced. In terms of these operators necessary non-local conditions binding traces of solution and its derivatives on the boundary of a rectangular domain are found. Necessary non-local conditions for the wave are obtained by using the limiting properties of Write function. By using the integral operator's properties the theorem of existence and uniqueness of solution of the problem with integral Samarski's condition for the diffusion-wave equation is proved. The solution is obtained in explicit form.
Mots-clés : diffusion-wave equation
Keywords: wave equation, fractional differential equations, necessary non-local conditions, Samarski's problem, derivative of fractional order.
@article{VSGU_2014_7_a3,
     author = {M. O. Mamchuev},
     title = {Necessary non-local conditions for a diffusion-wave equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {45--59},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a3/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - Necessary non-local conditions for a diffusion-wave equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 45
EP  - 59
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a3/
LA  - ru
ID  - VSGU_2014_7_a3
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T Necessary non-local conditions for a diffusion-wave equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 45-59
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a3/
%G ru
%F VSGU_2014_7_a3
M. O. Mamchuev. Necessary non-local conditions for a diffusion-wave equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 45-59. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a3/

[1] Nakhushev A. M., Fractional calculus and its applications, Fizmatlit, M., 2003, 272 pp. (in Russian) | Zbl

[2] Pskhu A. V., Fractional partial differential equations, Nauka, M., 2005, 199 pp. (in Russian) | MR | Zbl

[3] Pskhu A. V., “Fundamental solution of diffusion-wave equation of fractional order”, Proceedings of the RAS. Mathematical Series, 73:2 (2009), 141–182 (in Russian) | DOI | MR | Zbl

[4] Gekkieva S. Kh., “Cauchy problem for generalized equation of displacemant with fractal time derivative”, Reports of Circassian International Academy of Sciences, 5:1 (2000), 16–19 (in Russian)

[5] Nakhushev A. M., Equations of mathematical biology, Vysshaiia shkola, M., 1995, 301 pp. (in Russian) | Zbl

[6] Nakhusheva Z. A., “On one A. A. Dezin problem for mixed type equation with disconnected coefficients”, Reports of Circassian International Academy of Sciences, 8:2 (2006), 49–56 (in Russian)

[7] Nakhusheva Z. A., “Modified problem of Samarskiy for non-local diffusion equation”, Reports of Circassian International Academy of Sciences, 2:2 (1997), 36–41 (in Russian)

[8] Pskhu A. V., “Solution of boundary value problems for fractional diffusion equation by the Green function method”, Differential Equations, 39:10 (2003), 1430–1433 (in Russian) | MR | Zbl

[9] Nakhushev A. M., Problems with shift for partial differential equations, Nauka, M., 2006, 287 pp. (in Russian)

[10] Beylin S. A., Mixed problems with integral conditions for wave equation, Candidate's of Physico-Mathematical Sciences Thesis, Samara, 2005, 111 pp. (in Russian)

[11] Tikhonov A. N., Samarsky A. A., Equations of mathematical physics, Nauka, M., 1972, 735 pp. (in Russian) | MR