On the uncertainty constants for linear combination of some subsystems of coherent states
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Uncertainty constants for coherent states obtain irreduciable value. But problems of interpolation and orthogonalization requires the original system of functions to move to linear combinations. Localization of linear combinations of coherent states subsystems which have been set on a rectangular lattice are studied. Formulas for uncertainty constants of these combinations in general case and at additional assumptions on coefficients are received. Formulas for uncertainty constants of linear combinations of uniform shifts of Gauss function in general case and at additional assumptions on coefficients are received. Results of numerical calculations are given for the interpolating scaling functions constructed for uniform shifts of Gauss function.
Keywords: uncertainty constant, coherent states, uniform shifts of single function, Gaussian function, node function, frames.
Mots-clés : Fourier transformation
@article{VSGU_2014_7_a1,
     author = {M. V. Zhuravlev and I. Ya. Novikov and S. N. Ushakov},
     title = {On the uncertainty constants for linear combination of some subsystems of coherent states},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {17--31},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a1/}
}
TY  - JOUR
AU  - M. V. Zhuravlev
AU  - I. Ya. Novikov
AU  - S. N. Ushakov
TI  - On the uncertainty constants for linear combination of some subsystems of coherent states
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 17
EP  - 31
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a1/
LA  - ru
ID  - VSGU_2014_7_a1
ER  - 
%0 Journal Article
%A M. V. Zhuravlev
%A I. Ya. Novikov
%A S. N. Ushakov
%T On the uncertainty constants for linear combination of some subsystems of coherent states
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 17-31
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a1/
%G ru
%F VSGU_2014_7_a1
M. V. Zhuravlev; I. Ya. Novikov; S. N. Ushakov. On the uncertainty constants for linear combination of some subsystems of coherent states. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 17-31. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a1/

[1] Neumann I., Mathematical Foundations of Quantum Mechanics: Translation from German, ed. N. N. Bogolyubov, Nauka, M., 1964, 367 pp. (in Russian)

[2] Glauber R., Optical coherence and statistics of photons, Course of lectures, Mir, M., 1966, 178 pp. (in Russian)

[3] Daubechies I., Ten lectures on wavelets, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 464 pp. (in Russian)

[4] Perelomov A. M., “On the completeness of a system of coherent states”, TMF, 6:2 (1971), 213–224 (in Russian) | MR

[5] Perelomov A. M., Generalized coherent states and their applications, Nauka, M., 1987, 272 pp. (in Russian) | MR

[6] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Wavelet Theory, Phizmatlit, M., 2005, 616 pp. (in Russian) | MR

[7] Chui Ch., An Introduction to Wavelets, Mir, M., 2001, 412 pp. (in Russian)

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, in 3 Vol., v. 1, Elementary functions, 2-nd edition, corrected, Phizmatlit, M., 2002, 800 pp. (in Russian) | MR

[9] Maz'ya V., Schmidt G., “On approximate approximations using Gaussian kernels”, IMA J. Num. Anal., 16 (1996), 13–29 | DOI | MR | Zbl

[10] Maz'ya V., Approximate approximations, AMS Mathematical Surveys and Monographs, 141, 2007, 350 pp. | DOI | MR

[11] Zhuravlev M. V., Minin L. A., Sitnik S. M., “On computing features of interpolation by means of integer shifts of Gaussian functions”, Scientific Bulletin of Belgorod State University, 13(68):17/2 (2009), 89–99 (in Russian)