Properties of dual modules over Steenrod algebra
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 9-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of annulators and modules generated by annulators, including dual modules over Steenrod algebra are studied. Properties of Kroneker pairing are proved using general properties of Steenrod algebra and dual algebra as graded connected Hopf algebras. Isomorphisms between modules generated by annulators and dual modules over dual Stennrod algebra are proved. It is shown that these modules are Hopf comodules induced by coproduct in dual Steenrod algebra. All generators of these modules are found. The method of finding basis of module of indecomposable elements, viewed as vector space over cyclic field for some of the studied modules.
Keywords: graded Hopf algebra, comodule over Steenrod algebra, dual module
Mots-clés : annulator, indecomposable element.
@article{VSGU_2014_7_a0,
     author = {A. N. Vasilchenko},
     title = {Properties of dual modules over {Steenrod} algebra},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {9--16},
     year = {2014},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_7_a0/}
}
TY  - JOUR
AU  - A. N. Vasilchenko
TI  - Properties of dual modules over Steenrod algebra
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 9
EP  - 16
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_7_a0/
LA  - ru
ID  - VSGU_2014_7_a0
ER  - 
%0 Journal Article
%A A. N. Vasilchenko
%T Properties of dual modules over Steenrod algebra
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 9-16
%N 7
%U http://geodesic.mathdoc.fr/item/VSGU_2014_7_a0/
%G ru
%F VSGU_2014_7_a0
A. N. Vasilchenko. Properties of dual modules over Steenrod algebra. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 7 (2014), pp. 9-16. http://geodesic.mathdoc.fr/item/VSGU_2014_7_a0/

[1] Hilton P. J., Spanier E. H., “On imbeddability of certain complexes in Euclead space”, Proc. Amer. math. Soc., 11 (1960), 523–526 | DOI | MR | Zbl

[2] Mosher R., Tangora M., Cohomology Operations and applications in Homotopy theory, Harper and Row, 1968 ; Mir, M., 1970 | MR | Zbl | Zbl

[3] Adams J. F., “On the non-existance of elements of Hopf Invariant one”, Ann. of Math., 72 (1960), 20–104 | DOI | MR | Zbl

[4] Wall C. T. C., “Generators and relations for Steenrod algebra”, Ann. of Math., 72 (1960), 429–444 | DOI | MR | Zbl

[5] Cartan H., Algebres d'Eilenberg–MacLane at Homotopie, Seminare Cartan ENS, 7e, 1954–1955

[6] Cartan H., “Sur les groupes d'Eilenberg–MacLane $H(\pi,n)$”, Proc. Nat. Acad. Sci. USA, 40 (1954), 704–707 | DOI | MR | Zbl

[7] Milnor J., “The Steenrod algebra and its dual”, Ann. of Math., 67 (1958), 150–171 | DOI | MR | Zbl

[8] Milnor J., Moore J., “On the structure of Hopf algebras”, Ann. of Math., 81 (1965), 211–264 | DOI | MR | Zbl

[9] Steenrod N., Epstein D. B. A., Cohomological Operations, Princeton Univ. Press, 1962 ; Nauka, M., 1983 | MR | Zbl | Zbl

[10] Lang Serge, Algebra, Graduate texts in mathematics, 211, rev. 3d ed., Springer-Verlag, New York, 2002 | DOI | MR