Stabilization of generalized solution of the third boundary problem for a parabolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 93-96
Cet article a éte moissonné depuis la source Math-Net.Ru
With increasing time generalized solution of the problem with time-periodic parameters tends to time periodic function if some parameters satisfy the positivity or non-negativity. If parameters are not periodic in time, then the solution converges to the solution of the same problem with zero initial function.
Mots-clés :
parabolic equation
Keywords: third boundary value problem, generalized solution, stabilization.
Keywords: third boundary value problem, generalized solution, stabilization.
@article{VSGU_2014_3_a9,
author = {O. P. Filatov},
title = {Stabilization of generalized solution of the third boundary problem for~a~parabolic equation},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {93--96},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/}
}
TY - JOUR AU - O. P. Filatov TI - Stabilization of generalized solution of the third boundary problem for a parabolic equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2014 SP - 93 EP - 96 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/ LA - ru ID - VSGU_2014_3_a9 ER -
O. P. Filatov. Stabilization of generalized solution of the third boundary problem for a parabolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 93-96. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/
[1] Ladyzhenskaya O. A., Boundary-value problems of mathematical physics, Nauka, M., 1973, 408 pp. | MR
[2] Tikhonov A. N., Samarsky A. N., Equations of mathematical physics, Nauka, M., 1977, 736 pp.
[3] Vladimirov V. S., Equations of mathematical physics, Nauka, M., 1981, 512 pp. | MR
[4] Mikhailov V. P., Partial differential equations, Nauka, M., 1976, 392 pp. | MR | Zbl
[5] Bibikov Yu. N., Course of ordinary differential equations, Vysshaya shkola, M., 1991, 303 pp.