Stabilization of generalized solution of the third boundary problem for a parabolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 93-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With increasing time generalized solution of the problem with time-periodic parameters tends to time periodic function if some parameters satisfy the positivity or non-negativity. If parameters are not periodic in time, then the solution converges to the solution of the same problem with zero initial function.
Mots-clés : parabolic equation
Keywords: third boundary value problem, generalized solution, stabilization.
@article{VSGU_2014_3_a9,
     author = {O. P. Filatov},
     title = {Stabilization of generalized solution of the third boundary problem for~a~parabolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {93--96},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/}
}
TY  - JOUR
AU  - O. P. Filatov
TI  - Stabilization of generalized solution of the third boundary problem for a parabolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 93
EP  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/
LA  - ru
ID  - VSGU_2014_3_a9
ER  - 
%0 Journal Article
%A O. P. Filatov
%T Stabilization of generalized solution of the third boundary problem for a parabolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 93-96
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/
%G ru
%F VSGU_2014_3_a9
O. P. Filatov. Stabilization of generalized solution of the third boundary problem for a parabolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 93-96. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a9/

[1] Ladyzhenskaya O. A., Boundary-value problems of mathematical physics, Nauka, M., 1973, 408 pp. | MR

[2] Tikhonov A. N., Samarsky A. N., Equations of mathematical physics, Nauka, M., 1977, 736 pp.

[3] Vladimirov V. S., Equations of mathematical physics, Nauka, M., 1981, 512 pp. | MR

[4] Mikhailov V. P., Partial differential equations, Nauka, M., 1976, 392 pp. | MR | Zbl

[5] Bibikov Yu. N., Course of ordinary differential equations, Vysshaya shkola, M., 1991, 303 pp.