Inverse problem with integral overdetermination condition for a hyperbolic equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 83-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we study an inverse problem for a hyperbolic equation with integral overdetermination condition. The existence of a generalized solution is proved.
Keywords: hyperbolic equation, inverse problem, integral condition of overdetermination.
@article{VSGU_2014_3_a8,
     author = {A. E. Savenkova},
     title = {Inverse problem with integral overdetermination condition for a hyperbolic equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {83--92},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a8/}
}
TY  - JOUR
AU  - A. E. Savenkova
TI  - Inverse problem with integral overdetermination condition for a hyperbolic equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 83
EP  - 92
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a8/
LA  - ru
ID  - VSGU_2014_3_a8
ER  - 
%0 Journal Article
%A A. E. Savenkova
%T Inverse problem with integral overdetermination condition for a hyperbolic equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 83-92
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a8/
%G ru
%F VSGU_2014_3_a8
A. E. Savenkova. Inverse problem with integral overdetermination condition for a hyperbolic equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 83-92. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a8/

[1] Cannon J. R., Lin Y., “Determination of a control parameter in a parabolic partial differential equation”, J. Austral. Math. Soc. Ser. B, 33:2 (1991), 149–163 | DOI | MR | Zbl

[2] Cannon J. R., Lin Y., “Determination of a parameter p(t) in some quasi-linear parabolic differential equations”, Inverse Problems, 4:1 (1998), 35–45 | DOI | MR

[3] Kamynin V. L., “On inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Matematicheskie Zametki, 94:2 (2013), 207–217 | DOI | MR | Zbl

[4] Saffullova R. R., “Inverse problem with unknown complex external influence at complex overdetermination”, Matematicheskie Zametki YaGU, 13:2 (2006), 79–94

[5] Pavlov S. S., “Inverse problem of recovering the external influence for many-dimensional wave equation with integral overdetermination condition”, Matematicheskie Zametki YaGU, 18:1 (2011), 81–92

[6] Pavlov S. S., “Nolinear inverse problems for many-dimensional hyperbolic equations with integral overdetermination”, Matematicheskie Zametki YaGU, 18:2 (2011), 128–153

[7] Kamynin V. L., “On the inverse problem of determining the right-hand side in a parabolic equation under an integral overdetermination condition”, Matematicheskie Zametki, 77:4 (2005), 522–534 | DOI | MR | Zbl

[8] Kamynin V. L., “On the inverse problem of determining the leading coefficient in parabolic equation”, Matematicheskie Zametki, 84:1 (2008), 48–58 | DOI | MR | Zbl

[9] Prilepko A. I., Kostin A. B., “On inverse problems of determining a coefficient in a parabolic equation, II”, Sibirsky Matematichesky Zhurnal, 34:5 (1993), 147–162 | MR | Zbl

[10] Amirov A. Kh., “Solvability of the inverse problems”, Sibirsky Matematichesky Zhurnal, XXVIII:6 (1987), 3–11 | MR

[11] Denisov A. M., “Inverse problem for a hyperbolic equation with nonlocal boundary condition containing a delay argument”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 18, no. 1, 2012, 139–146

[12] Ladyzhenskaya O. A., Boundary problems of mathematical physics, Nauka, M., 1973, 407 pp. | MR