Basis of multilinear part of Leibniz algebras manifolds~$\widetilde{\mathrm{V}}_1$
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 76-82

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of trivial characteristic of base field, Leibniz algebras manifolds defined by the identity $x_1(x_2x_3)(x_4x_5)\equiv0$, has almost polynomial growth. In the work we continue research of this manifold, in particular, we construct bases of multilinear parts.
Keywords: Leibniz algebra, manifold, almost polynomial growth, bases of multilinear part.
@article{VSGU_2014_3_a7,
     author = {S. P. Mishchenko and Y. R. Pestova},
     title = {Basis of multilinear part of {Leibniz} algebras manifolds~$\widetilde{\mathrm{V}}_1$},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {76--82},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a7/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - Y. R. Pestova
TI  - Basis of multilinear part of Leibniz algebras manifolds~$\widetilde{\mathrm{V}}_1$
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 76
EP  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a7/
LA  - ru
ID  - VSGU_2014_3_a7
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A Y. R. Pestova
%T Basis of multilinear part of Leibniz algebras manifolds~$\widetilde{\mathrm{V}}_1$
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 76-82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a7/
%G ru
%F VSGU_2014_3_a7
S. P. Mishchenko; Y. R. Pestova. Basis of multilinear part of Leibniz algebras manifolds~$\widetilde{\mathrm{V}}_1$. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 76-82. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a7/