The exactness of the Gersten complex for Adzumaya algebras in equicharacteristic case
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 67-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the well-known problems of algebraic $K$-theory is the Gersten conjecture. In this work we prove a variant of Gersten conjecture for Adzumaya algebras in equicharacteristic case. Geometrical case of this proposition was proved in the article by I. Panin and A. Suslin.
Keywords: $K$-theory, Gersten conjecture, equicharacteristic ring, Adzumaya algebras.
@article{VSGU_2014_3_a6,
     author = {A. A. Mingazov},
     title = {The exactness of the {Gersten} complex for {Adzumaya} algebras in equicharacteristic case},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {67--75},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2014_3_a6/}
}
TY  - JOUR
AU  - A. A. Mingazov
TI  - The exactness of the Gersten complex for Adzumaya algebras in equicharacteristic case
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2014
SP  - 67
EP  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2014_3_a6/
LA  - ru
ID  - VSGU_2014_3_a6
ER  - 
%0 Journal Article
%A A. A. Mingazov
%T The exactness of the Gersten complex for Adzumaya algebras in equicharacteristic case
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2014
%P 67-75
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2014_3_a6/
%G ru
%F VSGU_2014_3_a6
A. A. Mingazov. The exactness of the Gersten complex for Adzumaya algebras in equicharacteristic case. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 3 (2014), pp. 67-75. http://geodesic.mathdoc.fr/item/VSGU_2014_3_a6/

[1] Colliot-Thélène J.-L., Ojanguren M., “Espaces principaux homogénes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75, 1992, 97–122 | DOI | MR | Zbl

[2] Grayson D., “Higher algebraic K-theory, II (after D. Quillen)”, Algebraic K-Theore, Proc. Conf. (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, no. 176, Springer-Verlag, 217–240 | DOI | MR

[3] Grothendieck A., Artin M., Verdie J.-L., Theorie des topos et cohomologie etale des schemas, Lect. Notes Math., 270, Springer, Berlin, 1972 | MR

[4] Panin I. A., “The Equicharacteristic Case of the Gersten Conjecture”, Theory of numbers, algebra and algebraic geometry, Collection of articles to the 80-th anniversary of the birth of Academician Igor Rostislavovich Shafarevich, Tr. MIAN, 241, Nauka, M., 2003, 169–178 | MR | Zbl

[5] Popesku D., “General Néron Desingularization”, Nagoya Math. J., 100 (1985), 97–126 | MR

[6] Popesku D., “General Néron Desingularization and Approximation”, Nagoya Math. J., 104 (1986), 85–115 | MR

[7] Popesku D., “General Néron Desingularization and Approximation”, Letter to Editor, Nagoya Math. J., 118 (1990), 45–53 | MR

[8] Quillen D., “Higher algebraic K-theory, I”, Albebraic K-Theory, Proc. Conf. (Seattle Res. Center, Battelle Memorial Inst., 1972), v. I, Lecture Notes in Math., 341, Higher K-Theories, Springer-Verlag, Berlin, 1973, 85–147 | DOI | MR

[9] Swan R. G., “Higher algebraic K-theory”, Proceeding of Symposia in Pure Mathematics, 58.1, 1995, 247–292 | DOI | MR

[10] Milne J., Etale cohomology, Mir, M., 1983, 392 pp.

[11] Panin I. A., Suslin A. A., “On one Grothendieck conjecture, concerning Adzumaya algebras”, Algebra and analysis, 9:4 (1997), 215–223 | Zbl